Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T13:16:35.840Z Has data issue: false hasContentIssue false

Dual detection X-ray fluorescence cryotomography and mapping on the model organism Daphnia magna

Published online by Cambridge University Press:  29 February 2012

B. De Samber*
Affiliation:
X-ray Microspectroscopy and Imaging (XMI), Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
S. Vanblaere
Affiliation:
Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent, Belgium
R. Evens
Affiliation:
Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent, Belgium
K. De Schamphelaere
Affiliation:
Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent, Belgium
G. Wellenreuther
Affiliation:
Hamburger Synchrotronstrahlungslabor at DESY, Notkestr. 85, D-22603 Hamburg, Germany
F. Ridoutt
Affiliation:
Hamburger Synchrotronstrahlungslabor at DESY, Notkestr. 85, D-22603 Hamburg, Germany
G. Silversmit
Affiliation:
X-ray Microspectroscopy and Imaging (XMI), Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
T. Schoonjans
Affiliation:
X-ray Microspectroscopy and Imaging (XMI), Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
B. Vekemans
Affiliation:
X-ray Microspectroscopy and Imaging (XMI), Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
B. Masschaele
Affiliation:
Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium
L. Van Hoorebeke
Affiliation:
Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium
K. Rickers
Affiliation:
Hamburger Synchrotronstrahlungslabor at DESY, Notkestr. 85, D-22603 Hamburg, Germany
G. Falkenberg
Affiliation:
Hamburger Synchrotronstrahlungslabor at DESY, Notkestr. 85, D-22603 Hamburg, Germany
C. Janssen
Affiliation:
Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent, Belgium
L. Vincze
Affiliation:
X-ray Microspectroscopy and Imaging (XMI), Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Micro-X-ray fluorescence (μ-XRF) is a rapidly evolving analytical technique which allows visualising the trace level metal distributions within a specimen in an essentially nondestructive manner. At second generation synchrotron radiation sources, detection limits at the sub-parts per million level can be obtained with micrometer resolution, while at third generation sources the spatial resolution can be better than 100 nm. Consequently, the analysis of metals within biological systems using micro- and nano-X-ray fluorescence imaging is a quickly developing field of research. Since X-ray fluorescence is a scanning technique, the elemental distribution within the sample should not change during analysis. Biological samples pose challenges in this context due to their high water content. A dehydration procedure is commonly used for sample preparation enabling an analysis of the sample under ambient temperature conditions. Unfortunately, a potential change in elemental redistribution during the sample preparation is difficult to verify experimentally and therefore cannot be excluded completely. Creating a cryogenic sample environment allowing an analysis of the sample under cryogenic condition is an attractive alternative but not available on a routine basis. In this article, we make a comparison between the elemental distributions obtained by micro-SR-XRF within a chemically fixed and a cryogenically frozen Daphnia magna, a model organism to study the environmental impact of metals. In what follows, we explore the potential of a dual detector setup for investigating a full ecotoxicological experiment. Next to conventional 2D analysis, dual detector X-ray fluorescence cryotomography is illustrated and the potential of its coupling with laboratory absorption micro-CT for investigating the tissue-specific elemental distributions within this model organism is highlighted.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balcaen, L., De Schamphelaere, K., Janssen, C., Moens, L., and Vanhaecke, F. (2008). “Development of a method for assessing the relative contribution of waterborne and dietary exposure to zinc bioaccumulation in Daphnia magna by using isotopically enriched tracers and ICP-MS detection,” Anal. Bioanal. Chem. ABCNBP 390, 555569.10.1007/s00216-007-1620-5CrossRefGoogle ScholarPubMed
De Samber, B., Evens, R., De Schamphelaere, K., Silversmit, G., Masschaele, B., Schoonjans, T., Vekemans, B., Janssen, C., Van Hoorebeke, L., Szaloki, I., Vanhaecke, F., Falkenberg, G., and Vincze, L. (2008). “A combination of synchrotron and laboratory X-ray techniques for studying tissue-specific trace level metal distributions in Daphnia magna,” J. Anal. At. Spectrom. JASPE2 23, 829839.10.1039/b800343mCrossRefGoogle Scholar
De Samber, B., Silversmit, G., De Schamphelaere, K., Evens, R., Schoonjans, T., Vekemans, B., Janssen, C., Masschaele, B., Van Hoorebeke, L., Szaloki, I., Vanhaecke, F., Rickers, K., Falkenberg, G., and Vincze, L. (2010). “Element-to-tissue correlation in biological samples determined by three-dimensional X-ray imaging methods,” J. Anal. At. Spectrom. JASPE2 25, 544553.10.1039/b918624gCrossRefGoogle Scholar
Falkenberg, G., Clauss, O., Swiderski, A., and Tschentscher, T. (2001). “Optics for the X-ray fluorescence beamline at HASYLAB,” Nucl. Instrum. Methods Phys. Res. A NIMAER 467, 737740.10.1016/S0168-9002(01)00483-1CrossRefGoogle Scholar
Falkenberg, G., Kracht, T., and Küchbacher, M. (2005). “Fast X-ray fluorescence imaging in continuous scanning mode at beamline L,” Hasylab Annual Report 1, 91-95.Google Scholar
Falkenberg, G., Rickers, K., Bilderback, D., and Huang, R. (2003). “A single bounce capillary for focusing of hard X-rays,” Hasylab Annual Report, www.hasylab.de.Google Scholar
Gholap, D., Izmer, A., De Samber, B., van Elteren, J., Selih, V., Evens, R., De Schamphelaere, K., Janssen, C., Balcaen, L., Lindemann, I., Vincze, L., and Vanhaecke, F. (2010). “Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna,” Anal. Chim. Acta ACACAM 664, 1926.10.1016/j.aca.2010.01.052CrossRefGoogle ScholarPubMed
Heijerick, D., De Schamphelaere, K., Van Sprang, P., and Janssen, C. (2005). “Development of a chronic zinc biotic ligand model for Daphnia magna,” Ecotoxicol. Environ. Saf. EESADV 62, 110.10.1016/j.ecoenv.2005.03.020CrossRefGoogle ScholarPubMed
Kanngießer, B., Malzer, W., Pagels, M., Lühl, L., and Weseloh, G. (2007). “Three-dimensional micro-XRF under cryogenic conditions: A pilot experiment for spatially resolved trace analysis in biological specimens,” Anal. Bioanal. Chem. ABCNBP 389, 11711176.10.1007/s00216-007-1494-6CrossRefGoogle ScholarPubMed
Laforsch, C. and Tollrian, R. (2000). “A new preparation technique of daphnids for scanning electron microscopy using hexamethyldisilazane,” Archiv Hydrobiol. AHYBA4 149, 587596.CrossRefGoogle Scholar
Muyssen, B., De Schamphelaere, K., and Janssen, C. (2006). “Mechanisms of chronic waterborne Zn toxicity in Daphnia magna,” Aquat. Toxicol. 77, 393401.10.1016/j.aquatox.2006.01.006CrossRefGoogle ScholarPubMed
Vekemans, B., Janssens, K., Vincze, L., Adams, F., and Van Espen, P. (1994). “Analysis of X-ray spectra by iterative least-squares (AXIL)—New developments,” X-Ray Spectrom. XRSPAX 23, 278285.10.1002/xrs.1300230609CrossRefGoogle Scholar
Vekemans, B., Janssens, K., Vincze, L., Aerts, A., Adams, F., and Hertogen, J. (1997). “Automated segmentation of μ-XRF image sets,” X-Ray Spectrom. XRSPAX 26, 333346.10.1002/(SICI)1097-4539(199711/12)26:6<333::AID-XRS231>3.0.CO;2-D3.0.CO;2-D>CrossRefGoogle Scholar