Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T18:45:13.440Z Has data issue: false hasContentIssue false

Di-μ-fluoro-bis[aqua-(dimethyl sulfoxide)-trifluorozirconium(IV)]

Published online by Cambridge University Press:  29 February 2012

Y. Gao
Affiliation:
Laboratoire des Oxydes et Fluorures, Université du Maine, CNRS UMR 6010, Avenue O. Messiaen, 72085 Le Mans, France
A. Le Bail*
Affiliation:
Laboratoire des Oxydes et Fluorures, Université du Maine, CNRS UMR 6010, Avenue O. Messiaen, 72085 Le Mans, France
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

[Zr2F8(dmso)2(H2O)2], a dehydration product of [ZrF4(dmso)(H2O)2]⋅2H2O, crystallizes in the orthorhombic symmetry [space group Cmca, a=7.8266(3) Å, b=13.5847(5) Å, c=15.6119(6) Å, and Z=4]. The structure, solved ab initio in direct space from X-ray powder diffraction data, is built up from [Zr2F8O4] bipolyhedra formed by edge sharing of [ZrF5O2] pentagonal bipyramids (condensed from isolated [ZrF4O3] pentagonal bipyramids in the precursor). Difficulties associated with a fortuitous hexagonal pseudosymmetry were surmounted. The dmso departure at 220 °C leads to an amorphous phase.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, N. W., Errington, W., Golby, S. L., Patterson, S. M. C., and Wallbridge, M. G. H. (1994). “Di-μ-fluoro-bis[bis(dimethyl sulfoxide)-trifluorozirconium(IV)],” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 50, 226227.10.1107/S0108270193008054CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113.10.1107/S002188986800508XCrossRefGoogle Scholar
Gao, Y. (1991). “Les verres fluorés ZBLAN: Étude de la synthese chimique des fluorures en milieu organique et étude de la dégradation de ces verres en milieu acide (HCl ou HF),” Ph.D. Thesis, University of Le Mans, France.Google Scholar
Gao, Y., Guery, J., and Jacoboni, C. (1993). “Structures of [Zr2F8(dmso)4] and [ZrF4(dmso)(H2O)2]⋅2H2O,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 49, 963965.10.1107/S0108270192012472CrossRefGoogle Scholar
Gerasimenko, A. V., Bukvetskii, B. V., Logvinova, V. B., and Davidovich, R. L. (1996). “Crystal structure of guanidinium hydroxonium pentafluorozirconate,” Koord. Khim. KOKHDC 22, 584590.Google Scholar
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. (2009). “Crystallography open database—An open-access collection of crystal structures,” J. Appl. Crystallogr. JACGAR 42, 726729.10.1107/S0021889809016690CrossRefGoogle ScholarPubMed
ICDD (2009). “Powder Diffraction File,” edited by Kabekkodu, S., International Centre for Diffraction Data, Newtown Square, Pennsylvania.Google Scholar
Il’in, E. G., Roesky, H. W., Aleksandrov, G. G., Kovalev, V. V., Sergeev, A. V., Yagodin, V. G., Sergeenko, V. S., Shchelokov, R. N., and Buslaev, Y. A. (1997). “Synthesis of zirconium tetrafluoride molecular complexes with organic ligands from ZrF4⋅H2O. Crystal structure of [ZrF4(dmso)2]2,” Dokl. Akad. Nauk DAKNEQ 355, 349352.Google Scholar
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo from Powder Diffraction Data,” Mater. Sci. Forum MSFOEP 378–381, 6570.10.4028/www.scientific.net/MSF.378-381.65CrossRefGoogle Scholar
Le Bail, A. (2004). “Monte Carlo indexing with MCMAILLE,” Powder Diffr. PODIE2 19, 249254.10.1154/1.1763152CrossRefGoogle Scholar
Le Bail, A. (2005). “Whole powder pattern decomposition methods and applications—A retrospection,” Powder Diffr. PODIE2 20, 316326.10.1154/1.2135315CrossRefGoogle Scholar
Le Bail, A. (2008). Principles and Applications of Powder Diffraction, edited by Clearfield, A., Reibenspies, J., and Bhuvanesh, N. (Wiley, New York), pp. 261309.Google Scholar
Le Bail, A., Cranswick, L. M. D., Adil, K., Altomare, A., Avdeev, M., Cerny, R., Cuocci, C., Giacovazzo, C., Halasz, I., Lapidus, S. H., Louwen, J. N., Moliterni, A., Palatinus, L., Rizzi, R., Schilder, E. C., Stephens, P. W., Stone, K. H., and van Mechelen, J. (2009). “Third structure determination by powder diffractometry round robin (SDPDRR-3),” Powder Diffr. PODIE2 24, 254262.10.1154/1.3200881CrossRefGoogle Scholar
Muetterties, E. L. (1960). “Stereochemistry of complexes based on metal tetrafluorides,” J. Am. Chem. Soc. JACSAT 82, 10821087.10.1021/ja01490a018CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B PHYBE3 192, 5569.10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
Sheldrick, G. M. (2008). “A short history of SHELX,” Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 112122.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065.10.1107/S002188987901178XCrossRefGoogle Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program PLATON,” J. Appl. Crystallogr. JACGAR 36, 713.10.1107/S0021889802022112CrossRefGoogle Scholar