Published online by Cambridge University Press: 06 March 2012
The X-ray fluorescence holography (XFH) method has drawn the attention of many researchers as a novel experimental technique for imaging a three-dimensional local atomic structure around a certain element in a single crystal. Synchrotron radiation (SR) has been mainly used for the measurements because of extremely weak signals that are about 0.3% of isotropic fluorescent radiation. The measurements limited to the use of a SR source clearly hinder from increasing the number of the users. Thus, we developed a laboratory XFH equipment with a conventional X-ray source by using a singly bent graphite monochromator with a large curvature and X-ray detector for a high counting rate. With this equipment, we have successfully demonstrated that high-quality hologram data of a gold single crystal almost equivalent to those with a SR source are obtained. Four different holograms are recorded in the normal and inverse XFH modes. An atomic image reconstructed from these holograms patterns shows a distinct atomic image of Au