Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T14:31:50.544Z Has data issue: false hasContentIssue false

Determining the crystal structure of Sr5(PO4)3Br, a new compound in the apatite series, by powder diffraction modeling

Published online by Cambridge University Press:  10 January 2013

Dagmar Nötzold
Affiliation:
Department of Chemistry, E.-M.-Arndt-University Greifswald, Soldtmannstrasse 16, D-17489 Greifswald, Germany
Harm Wulff
Affiliation:
Department of Chemistry, E.-M.-Arndt-University Greifswald, Soldtmannstrasse 16, D-17489 Greifswald, Germany

Abstract

Pentastrontium bromidephosphate, Sr5(PO4)3Br, was prepared by solid state reaction. The crystal structure of polycrystalline Sr5(PO4)3Br was refined from X-ray powder diffraction data by the Rietveld method using the structure model of Sr5(PO4)3Cl single crystals. Sr5(PO4)3Br is isostructural with Sr5(PO4)3Cl. The space group is P63/m. The cell parameters are a0=9.9641(1) Å, c0=7.2070(1) Å, α=β=90°, γ=120°, Z=2, d(calc)=4.27 g/cm3, and d(expt)=4.10 g/cm3. Atomic parameters are given. Final values are Rp=10.9%, Rwp=14.3%, and S=1.28. The figure of merit is F30=58 (0.013, 39).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dykes, E. (1974).Mater. Res. Bull. 9, 1227.Google Scholar
Elliott, J. C., Dykes, E., and Mackie, P. E. (1981).Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B37, 435, JCPDS-ICDD/PDF 2, 16-666.Google Scholar
Mackie, P. E., Elliott, J. C., and Young, R. A. (1972).Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B28, 1840.CrossRefGoogle Scholar
Mehmel, M. (1932).Z. Phys. Chem. Abt. B 15, 223.CrossRefGoogle Scholar
Naray-Szabo, St. (1930).Z. Kristallogr. 75, 387.Google Scholar
Nötzold, D., Wulff, H., and Herzog, G. (1994).J. Alloys Compd. 215, 281.CrossRefGoogle Scholar
Nötzold, D., and Wulff, H. (1997).Phys. Stat. Sol. (a) 160, 227.Google Scholar
Rietveld, H. M. (1969).J. Appl. Crystallogr. 2, 65.CrossRefGoogle Scholar
Schneider, J. (1987).Acta Crystallogr., Sect. A: Found. Crystallogr. A43, Suppl. C, 295.CrossRefGoogle Scholar
Shannon, R. D. (1976).Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A32, 751.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979).J. Appl. Crystallogr. 23, 60.Google Scholar
Sudarsanan, K., Mackie, P. E., and Young, R. A. (1972).Mater. Res. Bull. 7, 1331.CrossRefGoogle Scholar
Sudarsanan, K., and Young, R. A. (1974).Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B30, 1381.Google Scholar
Sudarsanan, K., Young, R. A., and Wilson, A. J. C. (1977).Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B33, 3136.Google Scholar
Wiles, D. B., and Young, R. A. (1981).J. Appl. Crystallogr. 14, 149.Google Scholar
Wilson, A. J. C., Sudarsanan, K., and Young, R. A. (1977).Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B33,3142.Google Scholar