Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T05:45:43.241Z Has data issue: false hasContentIssue false

Determination of lattice parameters from synchrotron powder data: A study using high temperature data for tungsten and alumina

Published online by Cambridge University Press:  01 March 2012

C. J. Ball*
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, PMB1 Menai, NSW 2234, Australia
*
a)a)Electronic mail: [email protected]

Abstract

The lattice parameters of α-alumina have been determined for temperatures in the range 20<T<1050 °C, using the lattice parameter of tungsten as a thermometer and a simple furnace in the diffractometer on the Australian beamline at the Photon Factory, Tsukuba, Japan. It is shown that the accuracy of this technique for measurement of cell parameters at temperatures up to ∼1200 °C is limited at present by uncertainty in the cell parameters of the reference material (i.e., tungsten) at high temperatures. Some problems with the equipment are discussed.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, W. J., and Grain, C. (1962). “Thermal expansion of alpha-alumina,” Adv. X-Ray Anal. AXRAAA 5, 244256.Google Scholar
Cheary, R. W., and Coelho, A. (1996). Collaborative Computational Project No. 14 in Powder and Single Crystal Diffraction, Program XFIT <http://www.dl.ac.uk/CCP/CCP14>..>Google Scholar
Munro, R. G. (1997). “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. JACTAW 80, 19191928.CrossRefGoogle Scholar
Sabine, T. M., Kennedy, B. J., Garrett, R. F., Foran, G. J., and Cookson, D. J. (1995). “The performance of the Australian Powder Diffractometer at the Photon Factory, Japan,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889894014627 28, 513517.CrossRefGoogle Scholar
Shvyd’ko, Yu. V., Lucht, M., Gerdau, E., Lerche, M., Alp, E. E., Sturhahn, W., Sutter, J., and Toellner, T. S. (2002). “Measuring wavelengths and lattice constants with the Mossbauer wavelength standard,” J. Synchrotron Radiat. JSYRES 10.1107/S0909049501019203 9, 1723.CrossRefGoogle Scholar
Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R. (1976). Thermophysical Properties of Matter (IFI/Plenum, New York), Vol. 12.Google Scholar
Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R. (1977). Thermophysical Properties of Matter (IFI/Plenum, New York), Vol. 13.Google Scholar
Wachtman, J. B., Scuderi, T. G., and Gleek, G. W. (1962). “Linear thermal expansion of aluminum oxide and thorium oxide from 100° to 1100°K,” J. Am. Ceram. Soc. JACTAW 45, 319323.CrossRefGoogle Scholar
White, G. K., and Minges, M. L. (1997). “Thermophysical properties of some key solids: An update,” Int. J. Thermophys. IJTHDY 5, 12691327.CrossRefGoogle Scholar
Yates, B., Cooper, R. F., and Pojur, A. F. (1972). “Thermal expansion at elevated temperatures: II. Aluminium oxide: Experimental date between 100 and 800 K and their analysis,” J. Phys. C JPSOAW 10.1088/0022-3719/5/10/009 5, 10461058.CrossRefGoogle Scholar