Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T08:23:51.376Z Has data issue: false hasContentIssue false

Debye temperature of wurtzite AlN determined by X-ray powder diffraction

Published online by Cambridge University Press:  14 July 2014

J. Wang
Affiliation:
Research and Development Center of Functional Crystal Beijing, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
M. Zhao
Affiliation:
Research and Development Center of Functional Crystal Beijing, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
S. F. Jin
Affiliation:
Research and Development Center of Functional Crystal Beijing, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
D. D. Li
Affiliation:
Research and Development Center of Functional Crystal Beijing, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
J. W. Yang
Affiliation:
Research and Development Center of Functional Crystal Beijing, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
W. J. Hu
Affiliation:
Research and Development Center of Functional Crystal Beijing, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
W. J. Wang*
Affiliation:
Research and Development Center of Functional Crystal Beijing, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The Debye temperature of wurtzite aluminum nitride (AlN) was determined by the Rietveld refinement method based on the room-temperature X-ray powder diffraction data. The refined lattice parameters are a = 3.11139(1) Å, c = 4.978 43(3) Å; the refined positional parameter for N is z = 0.384 59(33) Å; and the refined temperature factors of Al and N were 0.442(12) Å2 and 0.559(33) Å2, respectively. Using this refined temperature factor, the Debye temperature was evaluated as 971 K through the Debye approximation.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O. L. (1963). “A simplified method for calculating the Debye temperature from elastic constants,” J. Phys. Chem. Solids 24, 909917.CrossRefGoogle Scholar
Blanco, M. A., Francisco, E., and Luaña, V. (2004). “GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model,” Comput. Phys. Commun. 158, 5772.CrossRefGoogle Scholar
Chen, X. L., Liang, J. K., Xu, Y. P., Xu, T., Jiang, P. Z., Yu, Y. D., and Lu, K. Q. (1999). “Structure and Debye temperature of wurtzite GaN,” Mod. Phys. Lett. B 13, 285290.CrossRefGoogle Scholar
Dodd, S., Saunders, G., Cankurtaran, M., and James, B. (2001). “Ultrasonic study of the elastic and nonlinear acoustic properties of ceramic aluminum nitride,” J. Mater. Sci. 36, 723729.CrossRefGoogle Scholar
Kato, R. and Hama, J. (1994). “First-principles calculation of the elastic stiffness tensor of aluminium nitride under high pressure,” J. Phys.: Condens. Matter. 6, 7617.Google Scholar
Kazan, M., Moussaed, E., Nader, R., and Masri, P. (2007). “Elastic constants of aluminum nitride,” Phys. Status Solidi c 4, 204207.CrossRefGoogle Scholar
Lu, X. S. and Liang, J. K. (1981). “The determination of Debye characteristic temperatures of crystals from x-ray diffraction intensities,” Acta Phys. Sin. 30, 13611368.Google Scholar
Nipko, J. and Loong, C. K. (1998). “Phonon excitations and related thermal properties of aluminum nitride,” Phys. Rev. B 57, 10550.CrossRefGoogle Scholar
Peng, F., Chen, D., Fu, H. Z., and Cheng, X. L. (2008). “The phase transition and the elastic and thermodynamic properties of AlN: first principles,” Physica B 403, 42594263.CrossRefGoogle Scholar
Peng, T. H., Lou, Y. F., Jin, S. F., Wang, W. Y., Wang, W. J., Wang, G., and Chen, X. L. (2009). “Debye temperature of 4H-SiC determined by X-ray powder diffraction,” Powder Diffr. 24, 311314.CrossRefGoogle Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. 22, 151.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1990). “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Rodríguez-Carvajal, J. (2003). FULLPROF: a program for Rietveld refinement and pattern matching analysis, Version 2.45, Computer Software, Laboratories Léon Brillouin, CEA-CNRS, Saclay.Google Scholar
Saib, S. and Bouarissa, N. (2006). “Electronic properties and elastic constants of wurtzite, zinc-blende and rocksalt AlN,” J. Phys. Chem. Solids 67, 18881892.CrossRefGoogle Scholar
Shimada, K., Sota, T., and Suzuki, K. (1998). “First-principles study on electronic and elastic properties of BN, AlN, and GaN,” J. Appl. Phys. 84, 4951.CrossRefGoogle Scholar
Slack, G. A., Tanzilli, R. A., Pohl, R., and Vandersande, J. (1987). “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48, 641647.CrossRefGoogle Scholar
Song, Y. T., Wu, X., Wang, W. J., Yuan, W. X., and Chen, X. L. (2004). “Thermal stability and electronic specific heat of GaN,” J. Alloys Compd. 370, 6568.CrossRefGoogle Scholar
Sotnikov, A., Schmidt, H., Weihnacht, M., Smirnova, E., Chemekova, T., and Makarov, Y. (2010). “Elastic and piezoelectric properties of AlN and LiAlO2 single crystals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 808811.CrossRefGoogle ScholarPubMed
Wang, A. J., Shang, S. L., Du, Y., Kong, Y., Zhang, L. J., Chen, L., Zhao, D. D., and Liu, Z. K. (2010). “Structural and elastic properties of cubic and hexagonal TiN and AlN from first-principles calculations,” Comput. Mater. Sci. 48, 705709.CrossRefGoogle Scholar
Wang, Y. L., Ai, Q., Chen, X. R., and Cai, L. C. (2007). “Structural and thermodynamic properties of wurtzite-type aluminium nitride from first-principles calculations,” Chin. Phys. 16, 37833789.Google Scholar
Wang, Y. L., Cui, H. L., Yu, B. R., and Chen, X. R. (2008). “First-principle calculations of elastic properties of wurtzite-type aluminum nitride under pressure,” Commun. Theor. Phys. 49, 489492.Google Scholar
Wright, A. F. (1997). “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN,” J. Appl. Phys. 82, 2833.CrossRefGoogle Scholar
Yonenaga, I., Shima, T., and Sluiter, M. H. F. (2002). “Nano-indentation hardness and elastic moduli of bulk single-crystal AlN,” Jpn. J. Appl. Phys. 41, 46204621.CrossRefGoogle Scholar
Zuo, S. B., Wang, J., Chen, X. L., Jin, S. F., Jiang, L. B., Bao, H. Q., Guo, L. W., Sun, W., and Wang, W. J. (2012). “Growth of AlN single crystals on 6H-SiC (0001) substrates with AlN MOCVD buffer layer,” Cryst. Res. Technol. 47, 139144.CrossRefGoogle Scholar
Supplementary material: File

Wang Supplementary Material

Supplementary Material

Download Wang Supplementary Material(File)
File 16.6 KB