No CrossRef data available.
Article contents
Daniel Louër and the “Powder Crystallography and Reactivity of Solids” Group at the University of Rennes
Published online by Cambridge University Press: 01 March 2012
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Invited Articles
- Information
- Copyright
- Copyright © Cambridge University Press 2005
References
Audebrand, N., Auffrédic, J.-P., and Louër, D. (1998). “X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. General concepts on precursor-dependent microstructural properties,” Chem. Mater.CMATEX10.1021/cm980132f 10, 2450–2461.CrossRefGoogle Scholar
Audebrand, N., Auffrédic, J.-P., and Louër, D. (2000). “An X-ray powder diffraction study of the microstructure and growth kinetics of nanoscale crystallites obtained from hydrated cerium oxides,” Chem. Mater.CMATEX10.1021/cm001013e 12, 1791–1799.CrossRefGoogle Scholar
Auffrédic, J.-P., Boultif, A., Langford, J. I., and Louër, D. (1995). “Early stages of crystallite growth of ZnO obtained from an oxalate precursor,” J. Am. Ceram. Soc.JACTAW10.1111/j.1151-2916.1995.tb08803.x 78, 323–328.CrossRefGoogle Scholar
Auffrédic, J.-P. and Louër, D. (1978). “A calorimetric study of the thermal decomposition of zinc hydroxynitrate Zn3(OH)4(NO3)2,” Thermochim. ActaTHACAS 22, 193–196.CrossRefGoogle Scholar
Bataille, T., Audebrand, N., Boultif, A., and Louër, D. (2004). “Structure determination of thermal decomposition products from laboratory X-ray powder diffraction,” Z. Kristallogr.ZEKRDZ 219, 881–891.CrossRefGoogle Scholar
Bataille, T., Auffrédic, J.-P., and Louër, D. (1999). “Ab initio structure determination and dehydration dynamics of YK(C2O4)2∙4H2O studied by X-ray powder diffraction,” Chem. Mater.CMATEX 11, 1559–1567.CrossRefGoogle Scholar
Bataille, T. and Louër, D. (2000). “Powder and single-crystal X-ray diffraction study of the structure of [Y(H2O)]2(C2O4)(CO3)2,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768100010004 56, 998–1002.CrossRefGoogle Scholar
Boudaren, C., Auffrédic, J.-P., Louër, M., and Louër, D. (2003). “A powder X-ray diffraction study of lead chloride oxalate Pb2Cl2(C2O4): Ab initio structure determination and thermal behaviour,” Powder Diffr.PODIE210.1154/1.1590352 18, 205–213.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804014876 37, 724–731.CrossRefGoogle Scholar
Eriksson, L., Louër, D., and Werner, P.-E. (1989). “Crystal structure determination and Rietveld refinement of Zn(OH)(NO3).H2O,” J. Solid State Chem.JSSCBI 81, 9–20.CrossRefGoogle Scholar
Fabbiani, F. P. A., Allan, D. R., Parsons, S., and Pulham, C. R. (2005). “An exploration of the polymorphism of piracetam using high pressure,” CrystEngComm 7, 179–186.CrossRefGoogle Scholar
Guinier, A. (1956). Théorie et Technique de la Radiocristallographie, 2nd ed. (Dunod, Paris).Google Scholar
Langford, J. I., Boultif, A., Auffrédic, J.-P., and Louër, D. (1993). “The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite size and stacking faults in ex-oxalate zinc oxide,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892007684 26, 22–33.CrossRefGoogle Scholar
Langford, J. I. and Louër, D. (1982). “Diffraction line profiles and Scherrer constants for materials with cylindrical crystallites,” J. Appl. Crystallogr.JACGAR10.1107/S0021889882011297 15, 20–26CrossRefGoogle Scholar
Louër, D., Auffrédic, J.-P., Langford, J.-I., Ciosmak, D., and Niepce, J.-C. (1983). “A precise determination of the shape, size and distribution of size of crystallites in zinc oxide by X-ray line broadening analysis,” J. Appl. Crystallogr.JACGAR10.1107/S0021889883010237 16, 183–191.CrossRefGoogle Scholar
Louër, D. and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr.JACGAR10.1107/S002188988800411X 21, 430–437.CrossRefGoogle Scholar
Louër, D. and Louër, M. (1987). “Crystal structure of Nd(OH)2NO3.H2O completely solved and refined from X-ray powder diffraction,” J. Solid State Chem.JSSCBI 68, 292–299.CrossRefGoogle Scholar
Louër, D., Louër, M., Dzyabchenko, V. A., Agafonov, V., and Céolin, R. (1995). “Structure of a metastable phase of piracetam from X-ray powder diffraction using the atom-atom potential method,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 51, 182–187.CrossRefGoogle Scholar
Louër, M., Plévert, J. and Louër, D. (1988). “Structure of KCaPO4.H2O from X-ray powder diffraction data,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 44, 463–467.CrossRefGoogle Scholar
Vargas, R., Louër, D., and Langford, J. I. (1983). “Diffraction line profiles and Scherrer constants for materials with hexagonal crystallites,” J. Appl. Crystallogr.JACGAR10.1107/S0021889883010924 16, 512–518.CrossRefGoogle Scholar
Young, R. A., Gerdes, R. G., and Wilson, A. J. C. (1967). “Propagation of some systematic errors in X-ray line profile analysis,” Acta Crystallogr.ACCRA910.1107/S0365110X67000271 22, 155–162.CrossRefGoogle Scholar