Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T18:09:21.747Z Has data issue: false hasContentIssue false

Crystallographic data of new superlattice phases for spinel LiMn2O4 at low temperatures

Published online by Cambridge University Press:  10 January 2013

Hiroshi Hayakawa
Affiliation:
Department of Inorganic Materials, National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan
Toshimi Takada*
Affiliation:
Department of Inorganic Materials, National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan
Hirotoshi Enoki
Affiliation:
Department of Inorganic Materials, National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan
Etsuo Akiba
Affiliation:
Department of Inorganic Materials, National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan
*
a)To whom correspondence should be addressed: Tel: 298-54-4538, Fax: 298-54-4540, Electronic mail: [email protected]

Abstract

Extensive analyses of low-temperature powder x-ray diffraction data for spinel LiMn2O4 (Fdm at room temperature) make it clear that two structural phase transitions occur: first around 285 K from cubic to orthorhombic, second around 65 K from orthorhombic to tetragonal. At temperatures under 285 K, superlattice peaks appear in the diffraction pattern that were successfully indexed by tripling the a and b axes of the spinel unit cell. At 250 K, the unit cell is face-centered orthorhombic, Fddd, F2dd, or Fd2d, with a=24.855(1), b=24.755(2), c=8.2014(3) Å, V=5046.1(4) Å3, Dx=4.284 g/cm3, Z=72. The unit cell at 30 K was confirmed to be body-centered tetragonal I41/amd or I41/a, with a=17.5176(3), c=8.1961(2) Å, V=2515.1(1) Å3, Dx=4.298 g/cm3, Z=36.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelder, D. N., and Simmons, R. O. (1964). “Lattice constants and thermal expansivities of silicon and of calcium fluoride between 6 and 322 K,” J. Chem. Phys. 41, 23242329.CrossRefGoogle Scholar
Gao, Y., and Dahn, J. R. (1996). “Synthesis and Characterization of Li 1+xMn 2−xO 4 for Li-ion battery application,” J. Electrochem. Soc. 143, 100114.CrossRefGoogle Scholar
Gummow, R. J., de Kock, A., and Thackeray, M. M. (1994). “Improved retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells,” Solid State Ionics 69, 5967.CrossRefGoogle Scholar
Hayakawa, H., Takada, T., Enoki, H., and Akiba, E. (1998). “New findings on the structural phase transitions of spinel LiMn 2O 4 at low temperature,” J. Mater. Sci. Lett. 17, 811812.CrossRefGoogle Scholar
Izumi, F. (1993). The Rietveld Method, edited by R. A. Young (Oxford University Press, Oxford), Chap. 13, pp. 236–253.Google Scholar
Oikawa, K., Kamiyama, T., Izumi, F., Chakomakos, B. C., Ikuta, H., Wakihara, M., Li, J., and Matsui, Y. (1998). “Structural phase transition of the spinel-type oxide LiMn 2O 4,Solid State Ionics 109, 3541.CrossRefGoogle Scholar
Rodriguez-Carvajal, J., Rousse, G., Masquelier, C., and Hervieu, M. (1998). “Electronic crystallization in a lithium battery material: columnar ordering of electrons and holes in the spinel LiMn 2O 4,Phys. Rev. Lett. 81, 46604663.CrossRefGoogle Scholar
Takada, T., Hayakawa, H., and Akiba, E. (1995). “Preparation and crystal structure refinement of Li 4Mn 5O 12 by the Rietveld method,” J. Solid State Chem. 115, 420426.CrossRefGoogle Scholar
Takada, T., Enoki, H., Hayakawa, H., and Akiba, E. (1998). “Novel synthesis process and structural characterization of Li–Mn–O spinels,” J. Solid State Chem. 139, 290298.CrossRefGoogle Scholar
Tarascon, J. M., McKinnon, W. R., Coowar, F., Bowmer, T. N., Amatucci, G., and Guyomard, G. (1994). “Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn 2O 4,J. Electrochem. Soc. 141, 14211431.CrossRefGoogle Scholar
Toraya, H. (1986). “Whole-powder-pattern fitting without reference to a structural model application to X-ray powder diffractometer data,” J. Appl. Crystallogr. 19, 440447.CrossRefGoogle Scholar
Toraya, H. (1994). “Refinement of unit-cell parameters by whole-powder-pattern fitting technique,” Powder Diffr. 9, 272279.CrossRefGoogle Scholar
Toraya, H. (1993). “The Determination of unit-cell parameters from Bragg reflection data using a standard reference material but without a calibration curve,” J. Appl. Crystallogr. 26, 583590.CrossRefGoogle Scholar
Yamada, A. (1996). “Lattice instability in Li(Li xMn 2−x)O 4,J. Solid State Chem. 122, 160165.CrossRefGoogle Scholar
Yamada, A., and Tanaka, M. (1995). “Jahn–Teller structural phase transition around 280 K in LiMn 2O 4,Mater. Res. Bull. 30, 715721.CrossRefGoogle Scholar