Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T21:17:14.504Z Has data issue: false hasContentIssue false

Crystallographic data about hydrated and anhydrous lithium monoborates

Published online by Cambridge University Press:  10 January 2013

E. Bétourné
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, URA CNRS 1211, Université de Picardie Jules Verne, 33, rue Saint-Leu, 80039 Amiens Cedex, France
M. Touboul*
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, URA CNRS 1211, Université de Picardie Jules Verne, 33, rue Saint-Leu, 80039 Amiens Cedex, France
*
a)To whom all correspondence should be addressed; Electronic mail: [email protected]

Abstract

The anhydrous and hydrated lithium monoborates have been studied. The most hydrated phase is LiBO2·8H2O; its structural formula in the P3 space group is Li(H2O)4B(OH)4·2H2O. Refinement of the cell parameters yielded the following results: a=6.5483(5) Å, c=6.1692(7) Å with F(30)=64(0.015, 32), Z=1, and Dx=1.402 g/cm3. This phase gives LiB(OH)4 by spontaneous dehydration. An X-ray powder diffraction study of LiB(OH)4 as a function of temperature indicated three poorly crystallized hydrates. Two of these hydrates have the formula LiBO2·0.3H2O; the other, LiBO2·xH2O, has an undetermined water content. Crystal data for α-LiBO2 have been obtained: a=5.8473(10) Å, b=4.3513(6) Å, c=6.4557(10) Å, β=115.08(1)°, F(27)=58.5(0.001, 41); space group P21/c, Z=4, and Dx=2.18 g/cm3. β-LiBO2 does not exist but corresponds to the α-LiBO2 form observed at 600 °C. Numerous other LiBO2 forms reported recently have not been found.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benhassaı¨ne, A. (1972). “Sur de Nouveaux Borates Hydratés de Lithium,” C. R. Acad. Sci. Paris C 274, 1442–1445.Google Scholar
Benhassaı¨ne, A. (1973). “Nouveaux Equilibres entre l’Eau et les Borates des Métaux Monovalents,” thesis, Université Paris VI, Paris.Google Scholar
Bétourné, E. (1995). “Synthèse, Structure et Propriétés Thermiques de Borates de Lithium Hydratés,” thesis, Université de Picardie Jules Verne, Amiens.Google Scholar
Chang, C. H., and Margrave, J. L. (1967). “High Pressure-High Temperature Studies, Direct Preparation of β- and γ-LiBO 2,Mater. Res. Bull., 2, 929933.CrossRefGoogle Scholar
De Wolff, P. M. (1968). “A Simplified Criterion for the Reliability of a Powder Pattern Indexing,” J. Appl. Crystallogr., 1, 108113.CrossRefGoogle Scholar
Höhne, E. (1966). “Localisierung der H-Atome in der Krystallstruktur des LiB(OH)4,Z. Anorg. Allg. Chem. 342, 188194.CrossRefGoogle Scholar
Kierfel, A., Will, G., and Stewart, R. F. (1983). “The Chemical Bonding in Lithium Metaborate, LiBO 2. Charge Densities and Electrostatic Properties,” Acta Crystallogr. B 39, 175185.CrossRefGoogle Scholar
Liang, J., Chai, Z., and Zhao, S. (1990). “Crystallization of Amorphous LiBO 2 and its Phase Transition,” Sci. China 33, 595–606.Google Scholar
Liang, J., Chen, X., Chai, Z., Zhao, S., Cheng, X., Zhang, Y., and Rao, J. (1995). “Crystallization Mechanism of Dehydrated Amorphous LiBO 2,Phys. Rev. B 51, 756762.CrossRefGoogle ScholarPubMed
Malmros, G., and Werner, P. E. (1973). “Automatic Densitometer Measurements of Powder Diffraction Photographs,” Acta Chem. Scand. 27, 493502.CrossRefGoogle Scholar
Maraine-Giroux, C., Bouaziz, R., and Perez, G. (1972). “Les Composés LiBO 2 et Li 6B 4O 9 dans le Binaire Oxyde de Lithium-Sesquioxyde de Bore,” Rev. Chim. Minér. 9, 779787.Google Scholar
Marezio, M., and Remeika, J. P. (1966). “Polymorphism of LiMO 2 Compounds and High-Pressure Single-Crystal Synthesis of LiBO 2,J. Chem. Phys. 44, 33483353.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS80 (developed to NBS*AIDS83). A FORTRAN Program for Crystallographic Data Evaluation. Natl. Bur. Stand. (U.S.) Tech. Note No. 1141, p. 54.CrossRefGoogle Scholar
Nakamura, S., and Hayashi, H. (1975). “On the Compounds in Li 2OB 2O 3H 2O System,” Yogyo Kyokai Shi 83, 3845.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “F N: A Criterion for Rating Powder Diffraction Patterns and Evaluating the Reliability of Powder-Pattern Indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Song, Y. C., and Huang, Z. K. (1991). “Phase Relationships in the Li 2OBaOB 2O 3 System,” Mater. Lett. 12, 363368.Google Scholar
Touboul, M., Bétourné, E. (1993a). “LiB 2O 3(OHH 2O as Precursor of Lithium Boron Oxide LiB 2O 3.5: Synthesis and Dehydration Process,” Solid State Ion. 63–65, 340345.CrossRefGoogle Scholar
Touboul, M., and Bétourné, E. (1993b). “New X-Ray Powder Diffraction Data for Trilithium Octaoxodihydroxopentaborate Li 3B 5O 8(OH)2,Powder Diffr. 8, 162163.CrossRefGoogle Scholar
Touboul, M., and Bétourné, E. (1996). “Dehydration Process of Lithium Borates,” Solid State Ion. 84, 189197.CrossRefGoogle Scholar
Touboul, M., Bétourné, E., and Gérand, B. (1994). “New X-Ray Powder Diffraction Data for Lithium Tetrahydroxoborate LiB(OH)4,Powder Diffr. 9, 5455.CrossRefGoogle Scholar
Touboul, M., Bétourné, E., and Nowogrocki, G. (1995). “Crystal Structure and Dehydration Process of Li(H 2O)4B(OH)4·2H 2O,J. Solid State Chem. 115, 549553.CrossRefGoogle Scholar
Xia, Y., Chen, C., Tang, D., and Wu, B. (1995). “New Nonlinear Optical Crystals for UV and VUV Harmonic Generation,” Adv. Mater. 7, 7981.CrossRefGoogle Scholar
Zachariasen, W. H. (1964). “The Crystal Structure of Lithium Metaborate,” Acta Crystallogr. 17, 749751.CrossRefGoogle Scholar