Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T05:39:48.727Z Has data issue: false hasContentIssue false

Crystallochemistry and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases

Published online by Cambridge University Press:  01 March 2012

Abderrahim Aatiq*
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
My Rachid Tigha
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Rabia Hassine
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Ismael Saadoune
Affiliation:
Centre d’Excellence de Recherche sur les Matériaux (CERM), Laboratoire de Chimie des Matériaux et de l’environnement, Av. A. Khattabi, B.P. 549, Marrakech, Morocco
*
a)Electronic mail: [email protected]

Abstract

Crystallographic structures of two new orthophosphates Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 obtained by conventional solid state reaction techniques at 900 °C, were determined at room temperature from X-ray powder diffraction using Rietveld analysis. The two compounds belong to the Nasicon structural family. The space group is R3 for Ca0.50SbFe(PO4)3 and R3c for CaSb0.50Fe1.50(PO4)3. Hexagonal cell parameters for Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 are: a=8.257(1) Å, c=22.276(2) Å, and a=8.514(1) Å, c=21.871(2) Å, respectively. Ca2+ and vacancies in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3 are ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also a quasi-ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Thus, in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3, each Ca(3a)O6 octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (◻(3b)O6) site is located between two Sb5+O6 octahedra. In [Ca]M1Sb0.50Fe1.50(PO4)3 compound (R3c space group), all M1 sites are occupied by Ca2+ and the Sb5+ and Fe3+ ions are randomly distributed within the Nasicon framework.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A. (2004). “Synthesis and structural characterization of ASnFe(PO4)3 (A=Na2 ,Ca, Cd) phosphates with the Nasicon type structure,” Powder Diffr. PODIE2 10.1154/1.1725232 19, 272279.CrossRefGoogle Scholar
Aatiq, A. and Dhoum, H. (2004). “Structure of AFeTi(PO4)3 (A=Ca, Cd) Nasicon phases from powder X-ray data,” Powder Diffr. PODIE2 10.1154/1.1604127 19, 157161.CrossRefGoogle Scholar
Aatiq, A., Hassine, R., Tigha, R., and Saadoune, I. (2005). “Structures of two newly synthesized A0.50SbFe(PO4)3 (A=Mn, Cd) Nasicon phases,” Powder Diffr. PODIE2 10.1154/1.1862252 20, 3339.CrossRefGoogle Scholar
Aatiq, A., Ménétrier, M., Croguennec, L., Suard, E., and Delmas, C. (2002). “On the structure of Li 3Ti2(PO4)3,” J. Mater. Chem. JMACEP 10.1039/b203652p 12, 29712978.CrossRefGoogle Scholar
Aatiq, A., Ménétrier, M., El Jazouli, A., and Delmas, C. (2002). “Structural and lithium intercalation studies of Mn(0.5−x)CaxTi2(PO4)3 phases (0⩽x⩽0.50),” Solid State Ionics SSIOD3 10.1016/S0167-2738(02)00135-2 150, 391405.CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 10.1107/S0108768185002063 41, 244247.CrossRefGoogle Scholar
Cherkaoui, F., Viala, J. C., Delmas, C., and Hagenmuller, P. (1986). “Crystal chemistry and ionic conductivity of a new Nasicon-related solid solution Na1+xZr2−x∕2Mgx2(PO4)3,” Solid State Ionics SSIOD3 21, 333337.CrossRefGoogle Scholar
Delmas, C., Viala, J. C., Olazcuaga, R., Le Flem, G., Hagenmuller, P., Cherkaoui, F., and Brochu, R. (1981). “Ionic conductivity in Nasicon-type phases Na1+xZr2−xLx(PO4)3 (L=Cr, In, Yb),” Solid State Ionics SSIOD3 3/4, 209214.CrossRefGoogle Scholar
Hagman, L. and Kierkegaard, P. (1968). “The crystal structure of NaMe2IV(PO4)3; Me=Ge, Ti, Zr,” Acta Chem. Scand. (1947-1973) ACSAA4 22, 18221932.CrossRefGoogle Scholar
Hong, H. Y.-P. (1976). “Crystal structures and crystal chemistry in the system Na(1+x)Zr2SixP(3−x)O12,” Mater. Res. Bull. MRBUAC 10.1016/0025-5408(76)90073-8 11, 173182.CrossRefGoogle Scholar
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na5Ti(PO4)3,” J. Solid State Chem. JSSCBI 10.1006/jssc.1993.1248 105, 561566.CrossRefGoogle Scholar
Limaye, S. Y., Agrawal, D. K., and McKinstry, H. A. (1987). “Synthesis and thermal expansion of MZr 4P6O24 (M=Mg, Ca, Sr, Ba),” J. Am. Ceram. Soc. JACTAW 70, 232236.CrossRefGoogle Scholar
Masquelier, C., Wurn, C., Rodriguez-Carvajal, J., Gaubicher, J., and Nazar, L. F. (2000). “A powder neutron diffraction investigation of the two rhombohedral Nasicon analogues: γ-Na3Fe2(PO4)3 and Li 3Fe2(PO4)3,” Chem. Mater. CMATEX 10.1021/cm991138n 12, 525532.CrossRefGoogle Scholar
Nanjundaswamy, K. S., Padhi, A. K., Goodenoogh, J. B., Okada, S., Ohtsuka, H., Arai, H., and Yamaki, J. (1996). “Synthesis, redox potential evaluation and electrochemical characteristics of Nasicon-related-3D framework compounds,” Solid State Ionics SSIOD3 10.1016/S0167-2738(96)00472-9 92, 110.CrossRefGoogle Scholar
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., and Goodenoogh, J. B. (1997). “Mapping of transition metal redox energies in phosphates with Nasicon structure by lithium intercalation,” J. Electrochem. Soc. JESOAN 10.1149/1.1837868 144, 25812586.CrossRefGoogle Scholar
Pikl, R., De Waal, D., Aatiq, A., and El Jazouli, A. (1998). “Vibrational spectra and factor group analysis of Mn(0.5+x)Ti(2−2x)Cr2x(PO4)3 (0⩽x⩽0.5),” Vib. Spectrosc. VISPEK 16, 137143.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS) Saclay, France.Google Scholar
Roy, R., Vance, E. R., and Alamo, J. (1982). “[NZP], A new radiophase for ceramic nuclear waste forms,” Mater. Res. Bull. MRBUAC 17, 585589.CrossRefGoogle Scholar
Serghini, A., Brochu, R., Olazcuaga, R., and Gravereau, R. (1995). “The monovalent copper tin phosphate CuSn 2(PO4)3,” Mater. Lett. MLETDJ 10.1016/0167-577X(94)00243-6 22, 149153.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 10.1107/S0567739476001551 A32, 751767.CrossRefGoogle Scholar
Yin, S. C., Grondey, H., Strobel, P. S., and Nazar, L. F. (2004). Li 2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li 3V2(PO4),” Chem. Mater. CMATEX 10.1021/cm034802f 16, 14561465.CrossRefGoogle Scholar