Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T02:19:26.447Z Has data issue: false hasContentIssue false

Crystal structure refinement of the ferroelectric ceramic compound Sm2Bi2Ti3O12

Published online by Cambridge University Press:  10 January 2013

M. E. Villafuerte-Castrejón
Affiliation:
Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México. A. P. 70-360, Ciudad Universitaria, 04510, México D. F.
O. Alvarez-Fregoso
Affiliation:
Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México. A. P. 70-360, Ciudad Universitaria, 04510, México D. F.
L. E. Sansores
Affiliation:
Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México. A. P. 70-360, Ciudad Universitaria, 04510, México D. F.
A. Sànchez-Arjona
Affiliation:
Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México. A. P. 70-360, Ciudad Universitaria, 04510, México D. F.
J. Duque
Affiliation:
Centro Nacional de Investigaciones Científicas, A.P. 6880, Ciudad de la Habana, Cuba
R. Pomés
Affiliation:
Centro Nacional de Investigaciones Científicas, A.P. 6880, Ciudad de la Habana, Cuba

Abstract

Sm2Bi2Ti3O12 was synthesized by solid state reaction from Sm2O3, Bi2O3, and TiO2 in molar relation 1:1:3. Title compound is isostructural with Bi4Ti3O12. Products of the reaction were analyzed by X-ray diffraction methods. The crystal structure was refinement by the Rietveld Method. Cell parameters are: a=5.368(2), b=5.369(2), and c=32.71(2) Å, space group Fmmm. The final R value was 9.96% (Rw=13.43%).© 1998 International Center for Diffraction Data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Fregoso, O. (1997). “Structural and dielectric characterization of Sm 2Bi 2Ti 3O 12 ferroelectric ceramics,” J. Appl. Phys. 83, 13871391.CrossRefGoogle Scholar
Aurivillius, B.(1950). “Mixed bismuth oxides with layer lattices II. Structure of Bi 4Ti 3O 12,” Ark. Kem. Bd 1 nr 58.Google Scholar
Diffract/AT Version-3.2 (1993). By Socabin-Siemens.Google Scholar
Newnham, R. E., Wolfe, R. W., and Dorrian, J. F. (1971). “Structural basis of ferroelectricity in the bismuth titanate family,” Mater. Res. Bull. 6, 10291040.CrossRefGoogle Scholar
Rae, D., Thompson, G., Withers, R., and Willis, A. (1990). “Structure refinement of commensurately modulated bismuth titanate, Bi 4Ti 3O 12,Acta Crystallogr. Sec. B: Struct. Sci. 46, 474487.CrossRefGoogle Scholar
Sakthivel, A., and Young, R. (1992). “DBWS-9006PC/Program for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns,” School of Physics, Georgia Institute of Technology.Google Scholar
Werner, P., Eriksson, L., and Westdahl, M. (1985). “Powder indexing program for all symmetries,” J. Appl. Crystallogr. 18, 367370.CrossRefGoogle Scholar