Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T00:29:53.177Z Has data issue: false hasContentIssue false

Crystal structure of the monoclinic perovskite Sr3.94Ca1.31Bi2.70O12

Published online by Cambridge University Press:  10 January 2013

W. Wong-Ng
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Q. Huang
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
R. S. Roth
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Abstract

The crystal structure of the low-temperature oxidized form of Sr49.5Ca16.5Bi34O151 has been determined using a combination of neutron, synchrotron, and laboratory X-ray powder diffraction data. The structure is pseudo-orthorhombic; systematic absences and successful refinement indicated the true structure to be monoclinic, with space group P2l/n. Structural refinement using only neutron powder data yielded the lattice parameters a=8.38 898(29) Å, b=5.99 334(21) Å, c=5.89 586(20) Å, β=89.997(8)°, and V=296.43(3) Å3. This compound is a distorted perovskite phase [described in the perovskite ABO3 formula as Sr(Bi0.7Ca0.3)O3] with ordering of the M-site cations, resulting in the formula A2MMO6. In this ordered structure, the A sites are solely occupied by Sr, the M sites mainly by Bi, while on the M sites Bi and Ca are distributed in an approximate ratio of 2:3. The MO6 and MO6 octahedra share corners, and are tilted with respect to the neighboring layers with an angle of ∼15° around all three axes. The tilt system symbol is a+aa according to Glazer notation. All Bi ions are in the 5+ oxidation state.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachandran, U. (1998). “Development of ceramic superconductors for electric power applications,” Ceram. Trans. 84, Impact of Recent Advances in Synthesis and Processing of Ceramic Superconductors, Amer. Ceram. Soc., edited by W. Wong-Ng, U. Balachandran, and A. S. Bhalla, pp. 157–171.Google Scholar
Boultif, A., and Louer, D. (1991). “Indexing of powder diffraction patterns for low symmetry latices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.CrossRefGoogle Scholar
Brese, N. E., and O’Keefe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr., Sect. B: Struct. Sci. 47, 192197.CrossRefGoogle Scholar
Brown, I. D., and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr., Sect. B: Struct. Sci. 41, 244247.CrossRefGoogle Scholar
Fernandez-Diaz, M. T., Alonso, J. A., Martinez-Lope, M. J., Casci, M. T., Garci-Munoz, L. J., and Aranda, M. A. G. (1999). “Charge segregation in RNiO 3 perovskites: simultaneous metal-insulation and structural transition,” abstract M12.EE.003, XVIIIth IUCr Congress & General Assembly, 4–13 August 1999, Glasgow, Scotland.Google Scholar
Glazer, A. M. (1972). “The classification of tilted octahedral in perovskites,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 33843392.CrossRefGoogle Scholar
Kazakov, S. M., Chaillout, C., Bordet, P., Capponi, J. J., Nunez-Reguelro, M., Rysak, A., Tholence, J. L., Radacelli, P. G., Putlin, S. N., and Antipov, E. V. (1997). “Discovery of a second family of bismuth-oxide-based superconductors,” Nature (London) 390, 148150.CrossRefGoogle Scholar
Keller, H. L., Meier, K. H., and Mueller-Buschbaum, H. (1975). “Zur kristallstruktur von SrPbO 3,Zeit. Naturforsch., Teil B: Anorg. Chem. 30, 277278;Inorganic Crystal Structure Database collection code 4121.CrossRefGoogle Scholar
Larson, A. C., and Von Dreele, R. B. (1998). GSAS, The General Structure Analysis System, Los Alamos National Laboratory.Google Scholar
Malozemoff, A. P., Li, Q., and Fleshler, S. (1999). “Progress in BSCCO-2223 tape technology,” submitted.Google Scholar
Mighell, A. D., and Himes, V. L. (1986). “Compound identification and characterization using lattice-formula matching techniques,” Acta Crystallogr., Sect. A: Found. Crystallogr. 42, 101105.CrossRefGoogle Scholar
Powder Diffraction File (PDF), produced by ICDD, 12 Campus Blvd., Newtown Square, PA 19073–3273.Google Scholar
Rawn, C. J., Roth, R. S., Burton, B. J., and Hill, M. D. (1994). “Phase equilibria and crystal chemistry in portions of the system SrOCaO–1/2Bi 2O 3CuO:V, The System SrOCaO–1/2Bi 2O 3,J. Am. Ceram. Soc. 77, 21732178.CrossRefGoogle Scholar
Roth, R. S., Burton, B. P., and Rawn, C. J. (1990). “Phase equilibria and crystal chemistry in portions of the system SrOCaOBi 2O 3CuO. Part III. Preliminary phase diagrams for the ternary systems SrOBi 2O 3CuO, CaOBi 2O 3CuO and SrOCaOBi 2O 3,Ceram. Trans. 13, 2333.Google Scholar
Sandhage, K. H., Riley, G. N. Jr., and Carter, W. (1991). “Critical issues in the OPIT processing of high-J c BSCCO superconductors,” J. Met. 43, 2125.Google Scholar
Visser, J. W. (1969). “A fully automatic program for finding the unit cell from powder data,” J. Appl. Crystallogr. 2, 8995.CrossRefGoogle Scholar
Willis, J. O., Ray II, R. D., Holesinger, T. G., Zhou, R., Salazar, K. V., Coulter, J. Y., Gingert, J. J., Phillips, D. S., and Peterson, D. E. (1995). “Bi-2212 and Bi-2223 wire development,” Proceedings of the 7th US/Japan Workshop on High Temperature Superconductors, Tsukuba, Japan, pp. 22–24, October 1995.Google Scholar
Wong-Ng, W., Cook, L. P., Jiang, F., Greenwood, W., Balachandran, U., and Lanagan, M. (1997). “Subsolidus phase equilibria of the high T c Pb-2223 superconductor in the (Bi, Pb)–Sr–Ca–Cu–O system under 7.5% O 2,J. Mater. Res. 12, 28552865.CrossRefGoogle Scholar
Wong-Ng, W., Cook, L. P., and Jiang, F. (1998a). “The primary crystallization phase field of ‘2212’ phase and the effect of Ag addition,” J. Am. Ceram. Soc. 81, 18291838.CrossRefGoogle Scholar
Wong-Ng, W., Kaduk, J. A., and Greenwood, W. (1998b). “Crystal structures and reference X-ray powder diffraction patterns of Sr 4−xCa xPb 2O 8 (x=1,2,3),Powder Diffr. 13, 232240.CrossRefGoogle Scholar
Wong-Ng, W., Cook, L. P., and Kearsley, A. (1999). “Primary phase field of the Pb-doped 2223 high T c superconductor in the (Bi, Pb)–Sr–Ca–Cu–O system,” J. Res. Natl. Inst. Stand. Technol. 104, 277289.CrossRefGoogle Scholar
Wong-Ng, W., Cook, L. P., Greenwood, G., and Kearsley, A. (2000). “Effect of Ag on the primary phase field of high T c (Bi, Pb)-2223 superconductor,” J. Mater. Res. 15, 296305.CrossRefGoogle Scholar
Woodward, P. M. (1997a). “Octahedral tilting in perovskites. I. Geometrical considerations,” Acta Crystallogr., Sect. B: Struct. Sci. 53, 3243.CrossRefGoogle Scholar
Woodward, P. M. (1997b). “Octahedral tilting in perovskites. II. Structure stabilizing forces,” Acta Crystallogr., Sect. B: Struct. Sci. 53, 4466.CrossRefGoogle Scholar