Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T23:58:04.508Z Has data issue: false hasContentIssue false

Crystal structure of the mineral strontiodresserite from laboratory powder diffraction data

Published online by Cambridge University Press:  29 February 2012

P. S. Whitfield*
Affiliation:
Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
L. D. Mitchell
Affiliation:
Institute for Research in Construction, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
Y. Le Page
Affiliation:
Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
J. Margeson
Affiliation:
Institute for Research in Construction, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
A. C. Roberts
Affiliation:
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of the mineral strontiodresserite, (Sr,Ca)Al2(CO3)2(OH)4⋅H2O, from the Francon Quarry, Montreal, Quebec, Canada, has been solved from laboratory powder diffraction data using a combination of charge-flipping and simulated annealing methods. The structure is orthorhombic in space group Pnma with a=16.0990(7), b=5.6133(3), and c=9.1804(4) Å (Z=4) and the framework of the mineral is isostructural with that of dundasite. The strontium has a coordination number of 9 and the carbonate anions form a bridge between the SrO9 polyhedra and AlO6 octahedra. The water molecule lies in a channel that runs parallel to the b axis. An ordered network of hydrogen atoms could be uniquely determined from crystal-chemical principles in the channels of strontiodresserite. Ab initio density functional theory (DFT) energy minimization of the whole structure gave results in full agreement with X-ray refinement results for nonhydrogen atoms. The stability of this model (as well as that of the corresponding model of dundasite) in the proposed Pnma space group was tested by DFT optimization in space group P1 of random small distortions of this structure. This test confirms that both minerals are isostructural, including their hydrogen-bond networks.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balzar, D. and Ledbetter, H. (1995). “Accurate modelling of size and strain broadening in the Rietveld refinement: The ‘double-Voigt’ approach,” Adv. X-Ray Anal. AXRAAA 38, 397404.Google Scholar
Birch, W. D., Kolitsch, U., Witzke, T., Nasdala, L., and Bottrill, R. S. (2000). “Petterdite, the Cr-dominant analogue of dundasite, a new mineral species from Dundas, Tasmania, Australia and Callenberg, Saxony, Germany,” Can. Mineral. CAMIA6 38, 14671476.10.2113/gscanmin.38.6.1467CrossRefGoogle Scholar
Brown, I. D. (2006a). bvparm2006.cif 〈www.ccp14.ac.uk〉.Google Scholar
Brown, I. D. (2006b). The Chemical Bond in Inorganic Chemistry. The Bond Valence Model IUCr Monographs on Crystallography (Oxford University Press, Oxford).CrossRefGoogle Scholar
Bruker-AXS (2008a). DIFFRACPlus TOPAS: TOPAS 4.2 Technical Reference (Computer Software) (Bruker-AXS GmbH, Karlsruhe, Germany).Google Scholar
Bruker-AXS (2008b). DIFFRACPlus TOPAS: TOPAS 4.2 User Manual. (Computer Software) (Bruker-AXS GmbH, Karlsruhe, Germany).Google Scholar
Cocco, G., Fanfini, L., Nunzi, A., and Zanazzi, P. F. (1972). “The crystal structure of dundasite,” Miner. Mag. MNLMBB 38, 564569.10.1180/minmag.1972.038.297.04CrossRefGoogle Scholar
Coelho, A. A. (2003). “Indexing of powder diffraction patterns by iterative use of singular value decomposition,” J. Appl. Crystallogr. JACGAR 36, 8695.10.1107/S0021889802019878CrossRefGoogle Scholar
Coelho, A. A. (2007). “A charge flipping algorithm incorporating the tangent formula for solving difficult structures,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 63, 400406.10.1107/S0108767307036112CrossRefGoogle ScholarPubMed
Ferraris, G. and Ivaldi, G. (1988). “Bond valence vs bond length in O…O hydrogen bonds,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 44, 341344.10.1107/S0108768188001648CrossRefGoogle Scholar
Jambor, J. L., Fong, D. G., and Sabina, A. P. (1969). “Dresserite, the new barium analogue of dundasite,” Can. Mineral. CAMIA6 10, 8489.Google Scholar
Jambor, J. L., Sabina, A. P., Roberts, A. C., and Sturman, B. D. (1977). “Strontiodresserite, a new Sr-Al carbonate from Montreal Island, Quebec,” Can. Mineral. CAMIA6 15, 405407.Google Scholar
Järvinen, M. (1993). “Application of symmetrized harmonics expansion to correction of the preferred orientation effect,” J. Appl. Crystallogr. JACGAR 26, 525531.10.1107/S0021889893001219CrossRefGoogle Scholar
Kresse, G. (1993). “Ab initio molekular dynamik für flüssige metalle,” Ph.D. thesis, Technische Universität, Wien, Austria.Google Scholar
Kresse, G. and Hafner, J. (1993). “Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B PLRBAQ 48, 1311513118.10.1103/PhysRevB.48.13115CrossRefGoogle ScholarPubMed
Le Bail, A. and Cranswick, L. M. D. (2008). SDPDRR-3: Structure determination by powder diffractometry round robin 3 〈http://cristal.org/SDPDRR3/results/index.html〉.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. MRBUAC 23, 447452.10.1016/0025-5408(88)90019-0CrossRefGoogle Scholar
Le Page, Y. and Rodgers, J. R. (2005). “Quantum software interfaced with crystal structure databases: Tools, results and perspectives,” J. Appl. Crystallogr. JACGAR 38, 697705.10.1107/S0021889805017358CrossRefGoogle Scholar
Le Page, Y. and Rodgers, J. R. (2006). “Low energy models from scratch: Application to SiNF,” Comput. Mater. Sci. CMMSEM 37, 537542.10.1016/j.commatsci.2005.11.012CrossRefGoogle Scholar
Looijenga-Vos, A. and Buerger, M. J. (2006). “Space-group determination and diffraction symbols,” International Tables for Crystallography, edited by Hahn, Th. (International Union for Crystallography, Chester, UK), Vol. A, p. 44.10.1107/97809553602060000506CrossRefGoogle Scholar
Madsen, I. C. and Hill, R. J. (1994). “Collection and analysis of powder diffraction data with near-constant counting statistics,” J. Appl. Crystallogr. JACGAR 27, 385392.10.1107/S0021889893008593CrossRefGoogle Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louer, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr. JACGAR 32, 3650.10.1107/S0021889898009856CrossRefGoogle Scholar
Mercier, P. H. J. and Le Page, Y. (2008). “Kaolin polytypes revisited ab initio,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 64, 131143.10.1107/S0108768108001924CrossRefGoogle ScholarPubMed
Oszlányi, G. and Süto, A. (2004). “Ab initio structure solution by charge flipping,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 60, 134141.10.1107/S0108767303027569CrossRefGoogle ScholarPubMed
Roberts, A. C. (1978). “Geological Survey of Canada, Current Research, Part B,” 78-1B, 180.Google Scholar
Roberts, A. C., Sabina, A. P., Bonardi, M., Jambor, J. L., Ramik, R. A., Sturman, B. D., and Carr, M. J. (1986). “Montroyalite, a new hydrated Sr-Al hydroxycarbonate from the Francon Quarry, Montreal, Quebec,” Can. Mineral. CAMIA6 24, 455459.Google Scholar
Sabine, T. M., Hunter, B. A., Sabine, W. R., and Ball, C. J. (1998). “Analytical expressions for the transmission factor and peak shift in absorbing cylindrical specimens,” J. Appl. Crystallogr. JACGAR 31, 4751.10.1107/S0021889897006961CrossRefGoogle Scholar
Shankland, K. and David, W. I. F. (2002). “Global optimization strategies,” Structure Determination from Powder Diffraction Data, edited by David, W. I. F., Shankland, K., McCusker, L. B., and Baerlocher, Ch. (Oxford University Press, Oxford, UK), pp. 252285.Google Scholar
Shiono, M. and Woolfson, M. M. (1992). “Direct-space methods in phase extension and phase determination. 1. Low-density elimination,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 48, 451456.10.1107/S010876739101471XCrossRefGoogle Scholar
Wills, A. S. (2008). VaList (Computer Program) 〈www.ccp14.ac.uk〉.Google Scholar