Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T00:50:44.128Z Has data issue: false hasContentIssue false

Crystal structure of potassium tetraperoxomolybdate (VI) K2[Mo(O2)4]

Published online by Cambridge University Press:  01 March 2012

M. Grzywa
Affiliation:
Faculty of Chemistry, Jagiellonian University ul. Ingardena 3, 30-060 Kraków, Poland
M. Różycka
Affiliation:
Faculty of Chemistry, Jagiellonian University ul. Ingardena 3, 30-060 Kraków, Poland
W. Łasocha*
Affiliation:
Faculty of Chemistry, Jagiellonian University ul. Ingardena 3, 30-060 Kraków, Poland
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, N. J., Dengel, A. C., Edwards, C. J., and Griffith, W. P. (1989). “Studies on transition metal peroxo complexes. 8. The nature of peroxomolybdates and peroxotungstates in aqueous solution,” J. Chem. Soc. Dalton Trans.JCDTBI, 12031208.CrossRefGoogle Scholar
Gresley, M. N., Griffith, W. P., Laemmel, A. C., Nogueira, H. I. S. and Parkin, B. C. (1997). “Studies on polyoxo and polyperoxo-metalates. 5. Peroxide-catalysed oxidations with heteropolyperoxo-tungstates and -molybdates,” J. Mol. Catal. A: Chem.JMCCF2 117, 185198.CrossRefGoogle Scholar
Lasocha, W., and Lewiński, K. (1994). “Proszki - A system of programs for powder diffraction data analysis,” J. Appl. Crystallogr.JACGAR10.1107/S002188989400066X 27, 437438.Google Scholar
Persdotter, I., Trysberg, L., and Somberg, R., (1986). “Studies on peroxomolybdates XI. The crystal structure of potassium decaoxooctaperoxopentamolybdate (VI) - Water (1/5),” Acta Chem. Scand., Ser. AACAPCT 40, 1–7.Google Scholar
Stomberg, R. (1969). “Studies on peroxomolybdates, The crystal structure of tetramminezinc (II) tetraperoxomolybdate (VI),” Acta Chem. Scand.ACHSE7 23, 27552763.CrossRefGoogle Scholar
Stomberg, R. (1988). “Structure of potassium tetraperoxotungstate (VI) K2[W(O2)4],” J. Less-Common Met.JCOMAH10.1016/0022-5088(88)90058-6 143, 363371.CrossRefGoogle Scholar
Stomberg, R. and Olson, S. (1996). “Studies on peroxomolybdates. XIX. Crystal structure of potassium heptaoxotetraperoxotrimolybdate (VI) - Water (1/2),” J. Alloys Compd.JALCEU10.1016/0925-8388(95)02183-3 237, 3944.CrossRefGoogle Scholar
Taube, F., Hashimoto, M., Andersson, I., and Pettersson, L. (2002). “Characterisation of aqueous peroxomolybdate catalysts applicable to pulp bleaching,” J. Chem. Soc. Dalton Trans.JCDTBI, 10021008.CrossRefGoogle Scholar
Tamami, B., and Yeganeh, H. (1999). “Polymer supported anionic peroxomolybdenum complexes as new, mild, efficient and versatile oxidants in organic synthesis,” Eur. Polym. J.EUPJAG 35, 14451450.CrossRefGoogle Scholar
Young, R. A., Sakthivel, A., Moss, T. S., and Paiva-Santos, C. O. (1995). “DBWS-9411 - An upgrade of the DBWS*.* programs for Rietveld refinement with PC and Mainframe computers,” J. Appl. Crystallogr.JACGAR10.1107/S0021889895002160 28, 366367.Google Scholar
Yudanov, I. V., Valentin, C., Gisdakis, P., and Roesch, N. (2000). “Olefin epoxidation by mono and bisperoxo complexes of Mo (VI): A density functional model study,” J. Mol. Catal. A: Chem.JMCCF2 158, 188197.CrossRefGoogle Scholar