Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T19:01:00.407Z Has data issue: false hasContentIssue false

Crystal structure of levocetirizine dihydrochloride Form I, C21H27ClN2O3Cl2

Published online by Cambridge University Press:  20 April 2021

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois60616, USA North Central College, 30 N. Brainard St., Naperville, Illinois60540, USA
Amy M. Gindhart
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois60616, USA North Central College, 30 N. Brainard St., Naperville, Illinois60540, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of levocetirizine dihydrochloride Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Levocetirizine dihydrochloride Form I apparently crystallizes in space group P21/n (#14) with a = 24.1318(21), b = 7.07606(9), c = 13.5205(7) Å, β = 97.9803(4)°, V = 2286.38(12) Å3, and Z = 4. The crystal structure consists of interleaved double columns of cations and anions along the short b-axis. The hydrogen bonds link the cations and anions along this axis. Each protonated nitrogen atom forms a strong N–H⋯Cl hydrogen bond to one of the chloride anions. The carboxylic acid group also forms an H-bond to Cl56, resulting in a ring with a graph set R1,2(10). The centrosymmetric P21/n model for the crystal structure of levocetirizine dihydrochloride is better than the non-centrosymmetric P21 model, even though levocetirizine is a chiral molecule; the sample exhibits weak second-harmonic generation, and three weak peaks which violate the glide plane are observed. The centrosymmetric model is better by statistical, graphical, and energetic measures, as well as by chemical reasonableness. To accommodate the chiral molecule in a centrosymmetric space group, the chiral central carbon atom was disordered over two half-occupied positions, so that each cation site could be occupied by a cation of the correct chirality. A powder pattern from a Le Bail extraction of this synchrotron data set is included in the Powder Diffraction File™ as entry 00-066-1627.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.10.1107/S0021889813013113CrossRefGoogle Scholar
Antao, S. M., Hassan, I., Wang, J., Lee, P. L., and Toby, B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld refinement of quartz, sodalite, tremolite, and meionite,” Can. Mineral. 46, 15011509.10.3749/canmin.46.5.1501CrossRefGoogle Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.10.1021/ci049780bCrossRefGoogle ScholarPubMed
Dassault Systèmes (2014). Materials Studio 8.0 (BIOVIA, San Diego, CA).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.CrossRefGoogle Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De Le Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, 'free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gates-Rector, S. and Blanton, T. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr. 39(4), 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 72, 171179.10.1107/S2052520616003954CrossRefGoogle ScholarPubMed
Henao, J. (2016). ICDD Grant-in-Aid; PDF entry 00-068-0812.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.10.1007/BF00549096CrossRefGoogle Scholar
Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S., and Ramesha, A. R. (2010). “Levocetirizinium dipicrate,” Acta Crystallogr. E: Struct. Rep. 66, o3167.CrossRefGoogle ScholarPubMed
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.CrossRefGoogle Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15(5), 427432.CrossRefGoogle ScholarPubMed
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A. (2020). “Mercury 4.0: from visualization to design and prediction,” J. Appl. Crystallogr. 53, 226235.CrossRefGoogle ScholarPubMed
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).Google Scholar
MDI (2014). Jade 9.5 (Materials Data. Inc., Livermore, CA).Google Scholar
MDI (2019). JADE Pro version 7.8 (Computer software), Materials Data, Livermore, CA, USA.Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, and Hutchison, G. R. (2011). “Open babel: an open chemical toolbox,” J. Chem. Informatics 3, 33. doi:10.1186/1758-2946-3-33.Google ScholarPubMed
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.10.1002/jcc.23153CrossRefGoogle ScholarPubMed
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (group 1) citrate salts,” Acta Crystallogr. B: Cryst. Eng. Mater. 74, 239252. doi:10.1107/S2052520618002330.CrossRefGoogle ScholarPubMed
Reddy, M., Srinivasan, T., Uppala, V., Vaddadi, P., and Joga, R. (2004a). “Polymorphic forms of dihydrochloride salts of cetirizine and processes for preparation thereof,” WO 050647 A2.Google Scholar
Reddy, M. S., Srinivasan, T. R., Uppala, V. B. R., Vaddadi, P. R., and Joga, R. (2004b). “Polymorphic forms of dihydrochloride salts of cetirizine and processes for preparation thereof,” US Patent Application 2004/0186112 A1 (Dr. Reddy's Laboratories Ltd.).Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. B: Struct. Sci. 56(3), 455465.CrossRefGoogle ScholarPubMed
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle ScholarPubMed
Tihi, J., Zupet, R., Pecavar, A., Kolenc, I., and Pavlin, D. (2011). “Process for the preparation of levocetirizine and intermediates thereof,” US Patent 8,049,011 B2.Google Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle Scholar
Wavefunction, Inc. (2020). Spartan ’18 Version 1.4.5, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine, CA 92612.Google Scholar