Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T22:46:47.004Z Has data issue: false hasContentIssue false

The crystal structure of La0.7Pr0.3Ba2Cu3Od ceramic compound

Published online by Cambridge University Press:  05 March 2012

X. S. Wu*
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Institute of Solid State Physics and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
H. Sha
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Institute of Solid State Physics and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
W. S. Tan
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Institute of Solid State Physics and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
Tao Yu
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Institute of Solid State Physics and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
A. Hu
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Institute of Solid State Physics and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
S. S. Jiang
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Institute of Solid State Physics and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
J. Wang
Affiliation:
BSRL, Institute of High Energy Physics, Beijing 100039, China
Y. F. Ding
Affiliation:
BSRL, Institute of High Energy Physics, Beijing 100039, China
*
a)Electronic mail: [email protected]

Abstract

The structure of new La0.7Pr0.3Ba2Cu3Oy (LPBCO) compound was obtained at room temperature from synchrotron radiation X-ray powder diffraction data and refined by Rietveld technique. LPBCO has an isotypical structure with YBa2Cu3Oy (YBCO). The crystal data are: La0.7Pr0.3Ba2Cu3O6.96, Mr=716.16, orthorhombic system, space group Pmmm, a=3.9147(1) Å, b=3.8672(1) Å, c=11.7033(2) Å, V=177.177(6) Å3, Z=1, Dx=6.714 g/cm3; the structure was refined with 35 parameters to Rwp=7.41%, Rp=5.32%, and Rexp=3.07% for 5001 step intensities. Moreover, the total content of oxygen in a unit cell is refined as 6.96, which is less than that of the calculated one. We attribute the superconductivity-depression to the increase of the valence of copper.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Capponi, J. J., Chaillont, C., Hewat, A. W., Lejay, P., Mariezio, M., Nguyou, N., Raveau, B., Sonbeyroux, J. L., Tholence, J., and Tounier, R. (1987). “Structure of the 100K superconductor Ba2YCu3O7 between 5-300K by neutron powder diffraction,” Europhys. Lett. EULEEJ 3, 13011307. eul, EULEEJ CrossRefGoogle Scholar
Cernik, R. J., Cheetham, A. K., Prout, C. K., Watkin, D. J., Wilkinson, A. P., and Willis, B. T. M. (1991). “The structure of cimetidine (C10H16N6S) solved from synchrotron-radiation X-ray powder diffraction data,” J. Appl. Crystallogr. JACGAR 24, 222226. acr, JACGAR CrossRefGoogle Scholar
Clearfield, A., McCusker, L. B., and Rudolf, P. (1984). “Crystal structures from powder data. 1. Crystal structure of ZrKH(PO4)2,Inorg. Chem. INOCAJ 23, 46794682. ino, INOCAJ CrossRefGoogle Scholar
Lightfoot, P., Thomson, J. B., Little, F. J., and Bruce, P. G. (1994). “Ab initio determination of crystal structures by X-ray powder diffraction: Structure of Li29Zr9Nb3O40,J. Mater. Chem. JMACEP 4, 167169. jtc, JMACEP CrossRefGoogle Scholar
Louer, M., Plevert, J., and Louer, D. (1988). “Structure of KCaPO4.H2O from X-ray powder diffraction data,” Acta Cryst. ZZZZZZ 44, 463467.CrossRefGoogle Scholar
Malik, S. K., Tomy, C. V., and Bhargava, P. (1991). “Suppression of superconductivity in the oxide systems R1−xPrxBa2Cu3O7−y (R=Sm, Gd, and Tm),” Phys. Rev. B PRBMDO 44, 70427045. prb, PRBMDO CrossRefGoogle ScholarPubMed
Nieva, G., Ghamaty, S., Lee, B. W., Maple, M. B., and Schuller, I. K. (1991). “Superconductivity and magnetism in Eu1−xPrxBa2Cu3O7−δ,Phys. Rev. B PRBMDO 44, 69997007. prb, PRBMDO CrossRefGoogle Scholar
Pawley, G. S. (1992). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. JACGAR 14, 357361. acr, JACGAR CrossRefGoogle Scholar
Radousky, H. (1992). “A review of the superconducting and normal state properties of Y1−xPrxBa2Cu3O7,J. Mater. Res. JMREEE 7, 19171939. jmr, JMREEE CrossRefGoogle Scholar
Sheldrick, G. M. (1990). “Phase annealing in SHELXL-90: Direct methods for larger structures,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 46, 467473. acf, ACACEQ CrossRefGoogle Scholar
Sheldrick, G. M. (1993). “A new least-squares refinement program for use with single crystal diffraction data,” Acta Crystallogr., Sect A: Found. Crystallogr. ACACEQ 49, 53. acf, ACACEQ CrossRefGoogle Scholar
Soderholm, L., Zhang, K., Hinks, D. G., Beno, M. A., Jorgensen, J. D., Segre, C. U., and Schuller, I. K. (1987). “Incorporation of Pr in YBa2Cu3O7−δ: electronic effects on superconductivity,” Nature (London) NATUAS 328, 604606. nat, NATUAS CrossRefGoogle Scholar
Wilson, C. C., and Wadsworth, J. W. (1990). “Crystal structure determination from low-resolution X-ray diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 46, 258262. acf, ACACEQ CrossRefGoogle Scholar
Werner, P.-E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semiexhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367370. acr, JACGAR CrossRefGoogle Scholar
Wu, X. S., Chen, W. M., Liu, W. J., Lin, J., Jin, X., and Jiang, S. S. (1998). “Structural anomalies in LaBa2Cu3Ox cuprates with iron substitution,” Physica C PHYCE6 301, 2936. phc, PHYCE6 CrossRefGoogle Scholar
Wu, X. S., Wang, F. Z., and Jiang, S. S. (2001). “Structure determination and Rietveld refinement of Y0.8Ca0.2Ba1.8La0.2Cu3Oy,Powder Diffr. PODIE2 16, 212215. pdj, PODIE2 CrossRefGoogle Scholar
Xu, Y., and Guan, W. (1992). “Ion-size effect on Tc in (R1−xPrx)Ba2Cu3O7−y systems (R=Nd, Eu, Gd, Dy, Y, Er, and Yb),” Phys. Rev. B PRBMDO 45, 31763179. prb, PRBMDO CrossRefGoogle Scholar
Yang, Ping, Sivakumar, A., and Hoong-Kun, Fun (1996). “Ab initio structure determination and Rietveld refinement of the crystal structure of (Pb0.6Cu0.4)Sr2PrCu2O7−x,Powder Diffr. PODIE2 10, 154158. pdj, PODIE2 CrossRefGoogle Scholar
Young, R. A. (1995). “DBWS-9411: An upgrade of the DBWS programs for Rietveld refinement with PC and mainframe computers,” J. Appl. Crystallogr. JACGAR 28, 366367. acr, JACGAR CrossRefGoogle Scholar
Zhigang, Zou, Jinhua, Ye, Kunihiko, Oka, and Yoshikazu, Nishihara (1998). “Superconducting PrBa2Cu3Ox,Phys. Rev. Lett. PRLTAO 80, 10741077. prl, PRLTAO Google Scholar