Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T19:38:43.240Z Has data issue: false hasContentIssue false

Crystal structure of donepezil hydrochloride form III, C24H29NO3⋅HCl

Published online by Cambridge University Press:  06 July 2021

Joel W. Reid*
Affiliation:
Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, CanadaS7N 2V3
James A. Kaduk
Affiliation:
North Central College, 131 S. Brainard St., Naperville, Illinois60540, USA Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois60616, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of donepezil hydrochloride, form III, has been solved with FOX using laboratory powder diffraction data previously submitted to and published in the Powder Diffraction File. Rietveld refinement with GSAS yielded monoclinic lattice parameters of a = 14.3662(9) Å, b = 11.8384(6) Å, c = 13.5572(7) Å, and β = 107.7560(26)° (C24H30ClNO3, Z = 4, space group P21/c). The Rietveld-refined structure was compared to a density functional theory (DFT)-optimized structure, and the structures exhibit excellent agreement. Layers of donepezil molecules parallel to the (101) planes are maintained by columns of chloride anions along the b-axis, where each chloride anion hydrogen bonds to three donepezil molecules each.

Type
Technical Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becke, A. D. (1993). “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys. 98, 56485652.CrossRefGoogle Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.CrossRefGoogle Scholar
Boultif, A., and Louer, D. (2004). "Powder pattern indexing with the dichotomymethod,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rerat, M., Casassa, S., Baima, J., Salustro, S., and Kirtman, B. (2018). “Quantum-mechanical condensed matter simulations with CRYSTAL,” WIREs Comput. Mol. Sci. 8, e1360.CrossRefGoogle Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns or organic compounds,” Acc. Chem. Res. 23(4), 120126.CrossRefGoogle Scholar
Favre-Nicolin, V., and Černý, R. (2002). “FOX , ‘Free objects for crystallography’:a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.CrossRefGoogle Scholar
Gates-Rector, S. and Blanton, T. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powd. Diffr. 39(4), 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010). “A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys. 132, 154104.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. B 72, 171179.CrossRefGoogle ScholarPubMed
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012). “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform. 4, 17.CrossRefGoogle ScholarPubMed
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.CrossRefGoogle Scholar
Imai, A., Wanatabe, H., Kajima, T., Ishihama, Y., Ohtsuka, A., Tanaka, T., and Narabu, Y. (1997). “Polymorphs of donepezil hydrochloride and process for production,” Patent WO 97/46527.Google Scholar
Imai, A., Wanatabe, H., Kajima, T., Ishihama, Y., Ohtsuka, A., and Tanaka, T. (2000). “Polymorphs of donepezil hydrochloride and process for production,” U.S. Patent 6,140,321.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). "General Structure Analysis System (GSAS)," Los Alamos National Laboratory Report No. LAUR 86-748, Los Alamos, NM.Google Scholar
Laugier, J. & Bochu, B. (2000). “LMGP-Suite. Suite of Programs for the Interpretation of X-ray Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. Available at: http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriquez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.CrossRefGoogle Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open babel: an open chemical toolbox,” J. Chem. Informatics, 114. doi:10.1186/1758-2946-3-33.Google ScholarPubMed
Park, Y., Lee, J., Lee, S. H., Choi, H. G., Mao, C., Kang, S. K., Choi, S.-E., and Lee, E. H. (2013). “Crystal structures of tetramorphic forms of donepezil and energy/temperature phase diagram via direct heat capacity measurements,” Cryst. Growth Des. 13, 54505458.CrossRefGoogle Scholar
Reid, J. W., Kaduk, J. A., and Vickers, M. (2016). "The crystal structure of trandolapril, C24H34N2O5: an example of the utility of raw data deposition in the Powder Diffraction File,” Powd. Diffr. 31, 205210.CrossRefGoogle Scholar
Spackman, M. A. and Byrom, P. G. (1997). “A novel definition of a molecule in a crystal,” Chem. Phys. Lett. 267, 215220.CrossRefGoogle Scholar
Sugimoto, H., Yamanishi, Y., Iimura, Y., and Kawakami, Y. (2000). “Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors,” Curr. Med. Chem. 7, 303339.CrossRefGoogle ScholarPubMed
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion corrected density functional theory (DFT-D),” Acta Crystallogr. B 70, 10201032.CrossRefGoogle Scholar
Vickers (2005). Investigation of Donepezil (Form III).Available at: http://img.chem.ucl.ac.uk/www/reports/done/done.htmGoogle Scholar
Vilela Oliverira, D., Peintinger, M. F., Laun, J., and Bredow, T. (2019). “BSSE-correction scheme for consistent Gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 40, 23642376.CrossRefGoogle Scholar
Vrbinc, M., Jordan-Kotar, B., Smrkolj, M., and Vrecer, F. (2007). “Characterization of physical forms of donepezil hydrochloride,” Acta. Chim. Slov. 54, 254267.Google Scholar