Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T05:50:46.826Z Has data issue: false hasContentIssue false

Crystal structure of dicalcium chromate hydrate

Published online by Cambridge University Press:  06 March 2012

C. E. Botez*
Affiliation:
Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York, 11794-3800
P. W. Stephens
Affiliation:
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
Oladipo Omotoso
Affiliation:
Natural Resources Canada, Energy Technology Centre, Devon, Alberta, T9G 1A8, Canada
*
a)Author to whom correspondence should be addressed; Electronic mail: [email protected]

Abstract

Direct methods and Rietveld analysis were applied to high-resolution synchrotron X-ray powder diffraction data to solve the crystal structure of dicalcium chromate hydrate (Ca2CrO5⋅3H2O). The compound crystallizes in monoclinic symmetry (space group Cm, Z=2), with a=8.23575(5) Å, b=7.90302(4) Å, c=5.20331(3) Å, and β=98.0137(3)°. The structure is built from double-layers of CrO4 tetrahedra and CaO8 polyhedra that run parallel to the (001) plane.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G., and Camalli, M. (1994). “SIRPOW92—a program for automatic solution of crystal structures by direct methods optimized for powder data,” J. Appl. Crystallogr. JACGAR 27, 435436. acr, JACGAR Google Scholar
ASTM D2638-91 (1997). “Standard test method for real density of calcined petroleum coke by helium pycnometer,” American Society for Testing and Materials.Google Scholar
Bars, O., Le Marouille, J. Y., and Grandjean, D. (1977). “Etude de chromates, molybdates et tungstates hydrates. II. Etude structurale de CaCrO4 H2O,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B33, 37513755. acb, ACBCAR CrossRefGoogle Scholar
Boultif, A.and Louer, D. (1991). “Indexing of powder diffraction for low symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993. acr, JACGAR CrossRefGoogle Scholar
EPA (1983). “Toxicity Characteristic Leaching Procedure,” Environmental Protection Agency Federal Register Vol. 51, 21685.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “Correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. JACGAR 27, 892900. acr, JACGAR Google Scholar
Glasser, F. P. (1993). Proceedings of the Chemistry and Microstructure of Solid Waste Forms (Lewis, Boca Raton, FL), p. 1.Google Scholar
Kindness, A., Macia, S. A., and Glasser, F. P. (1994). “Immobilization of chromium wastes in cement matrices,” Waste Manage. Res. WMARD8 14, 311. wmr, WMARD8 CrossRefGoogle Scholar
Langard, S. (1990). “One hundred years of chromium and cancer: A review of epidemiological evidence and related case reports,” Am. J. Ind. Med. AJIMD8 17, 189215. ajw, AJIMD8 CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (1987). “Program GSAS, General Structure Analysis System,” Los Alamos National Laboratory Report No. LA-UR-86-784, Los Alamos. Program and documentation available from http://public.lanl.gov/gsas.Google Scholar
Le Bail, A., Duro, H., and Fourquet, J. L. (1988). “The ab-initio structure determination of lithium antimony tungstate (LiSbWO6) by X-ray powder diffraction,” Mater. Res. Bull. MRBUAC 23, 447452. mrb, MRBUAC CrossRefGoogle Scholar
Means, J. L., Smith, L. A., Nehrig, K. L. W., Brauning, S. E., Gavaskar, A. R., Sass, B. M., Wiles, C. C., and Mashni, C. I. (1995). The Application of Solidification/Stabilization to Waste Materials (Lewis, Boca Raton, FL).Google Scholar
Omotoso, O., Ivey, D. G., and Mikula, R. J. (1998a). “Hexavalent chromium in tricalcium silicate. I. Quantitative X-ray diffraction analysis of crystalline products,” J. Mater. Sci. JMTSAS 33, 507513. jmt, JMTSAS CrossRefGoogle Scholar
Omotoso, O., Ivey, D. G., and Mikula, R. J. (1998b). “Hexavalent chromium in tricalcium silicate. II. Effects of chromium (VI) on the hydration of tricalcium silicate,” J. Mater. Sci. JMTSAS 33, 515522. jmt, JMTSAS CrossRefGoogle Scholar
Qi, W., Reiter, R. J., Tan, D.-X., Garcia, J. J., Manchester, L. C., Karbownik, M., and Calvo, J. R. (2000). “Chromium(III)-induced 8-hydroxydeoxyguanosine in DNA and its reduction by antioxidants: Comparative effects of melatonin, ascorbate, and vitamin E,” Environ. Health Perspect. EVHPAZ 108, 399402. ehp, EVHPAZ CrossRefGoogle ScholarPubMed
Rodriguez-Carvajal, J. (1990). “FULLPROF, a program for Rietveld refinement and pattern matching analysis,” Abstracts of the Powder Diffraction Meeting, Toulouse, France, pp. 127–128. Program and documentation available from http://www-llb.cea.fr/fullweb/fullprof.htm.Google Scholar
Visser, J. W. (1969). “A fully automatic program for finding the unit cell from powder data,” J. Appl. Crystallogr. JACGAR 2, 8995. acr, JACGAR CrossRefGoogle Scholar
Werner, P. E. (1985). “TREOR, a semi-exhaustive trial and error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367370. acr, JACGAR CrossRefGoogle Scholar