Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T16:09:17.216Z Has data issue: false hasContentIssue false

Crystal structure of ceftriaxone sodium hemiheptahydrate, C18H16N8O7S3Na2(H2O)3.5

Published online by Cambridge University Press:  25 August 2020

Diana Gonzalez
Affiliation:
Illinois Mathematics and Science Academy, 1500 Sullivan Rd., Aurora60506-1000, Illinois, USA
Joseph T. Golab
Affiliation:
Illinois Mathematics and Science Academy, 1500 Sullivan Rd., Aurora60506-1000, Illinois, USA
Jan Y. Eilert
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago60616, Illinois, USA
Rong Wang
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago60616, Illinois, USA
James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago60616, Illinois, USA North Central College, 131 S. Loomis St., Naperville60540, Illinois, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of ceftriaxone sodium hemiheptahydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Ceftriaxone sodium hemiheptahydrate crystallizes in the space group C2 (#5) with a = 30.56 492(16), b = 4.75 264(2), c = 18.54 978(16) Å, β = 90.3545(6), V = 2694.562(21) Å3, and Z = 4. Both Na exhibit trigonal bipyramidal coordination. Prominent in the structure are alternating Na/O and organic layers perpendicular to the c-axis. There are many O–H⋯O hydrogen bonds involving the water molecules and the ionized portions of the anion. There are a surprising number of C–H⋯S hydrogen bonds, as well as C–H⋯N and C–H⋯O hydrogen bonds. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.

Type
New Diffraction Data
Copyright
Copyright © 2020 International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Dassault Systèmes (2018). Materials Studio 2019 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gates-Rector, S. and Blanton, T. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powd. Diffr. 34(4), 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Gordon, M. S. and Schmidt, M. W. (2005). “Advances in electronic structure theory: GAMESS a decade later,” in Theory and Applications of Computational Chemistry: The First Forty Years, edited by Dykstra, C.E., Frenking, G., Kim, K.S., and Scuseria, G.E. (Elsevier, Amsterdam), pp. 11671189.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.CrossRefGoogle Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powd. Diffr. 29(3), 269273.CrossRefGoogle Scholar
Kresse, G., and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.CrossRefGoogle Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15(5), 427432.CrossRefGoogle ScholarPubMed
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powd. Diffr. 29, S7S12.CrossRefGoogle Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.CrossRefGoogle Scholar
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).Google Scholar
MDI (2019). MDI JADE Pro version 7.7 (Materials Data, Livermore, CA).Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Informatics 3, 33. doi:10.1186/1758-2946-3-33.Google ScholarPubMed
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.CrossRefGoogle ScholarPubMed
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. B Cryst. Eng. Mater. 74, 239252.CrossRefGoogle ScholarPubMed
Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., and Montgomery, J. A. (1993). “General atomic and molecular electronic structure system,” J. Comput. Chem. 14, 13471363.CrossRefGoogle Scholar
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle ScholarPubMed
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J., and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Wang, C., Wang, J., and Chen, W. (2007). “Crystal structure and crystal habit prediction studies on ceftriaxone sodium,” Chin. J. Antibiot. 32, 672678.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle ScholarPubMed
Wavefunction, Inc (2018). Spartan ‘18 Version 1.2.0, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Yang, L., Lu, H., Yao, B., An, Z., Hao, J., Qi, Y., Li, J., Xu, Y., Yuan, J., Qi, G., and Hu, Y. (2012). “Crystal form of boceftriaxone sodium and preparation methods for crystal form,” Chinese Patent CN102875574A.Google Scholar
Zhang, C., Wang, J., and Wang, Y. (2005). Non-isothermal dehydration kinetics of ceftriaxone disodium hemiheptahydrate,” Ind. Eng. Chem. Res. 44, 70577061.CrossRefGoogle Scholar