Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T10:34:27.978Z Has data issue: false hasContentIssue false

Crystal structure of bumetanide, C17H20N2O5S

Published online by Cambridge University Press:  11 March 2019

Samantha C. Diulus
Affiliation:
Northern Illinois University, 1425 W. Lincoln Hwy., DeKalb, Illinois 60115
James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616 North Central College, 131 S. Loomis St., Naperville, Illinois 60540
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of bumetanide has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Bumetanide crystallizes in space group P-1 (#2) with a = 5.00168(4), b = 9.22649(3), c = 19.59924(14) Å, α = 80.7941(5), β = 82.8401(7), γ = 86.8148(7)°, V = 885.268(9) Å3, and Z = 2. The crystal structure is layered with the double layers parallel to the ab plane. The exterior of the layer is composed of hydrocarbon portions of the molecule, both phenyl rings and butyl side chains. The central portion of the bilayer contains the hydrogen-bonding regions, both the carboxylic acid dimers and the hydrogen bonds involving the sulfonamide groups. The molecular conformations of bumetanide in this current triclinic structure and the previously-determined monoclinic polymorph FEDGON are very similar, as are the energies of the two polymorphs. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1609.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allu, S., Bolla, G., Tothadi, S., and Nangia, A. (2017). “Supramolecular synthons in bumetanide cocrystals and ternary products,” Cryst. Growth Des. 17, 42254236.Google Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bernstein, J., and Zevin, L. (1990). “Bumetanide,” ICDD Grant-in-Aid.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Eng. 34(15), 15551573.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Dassault Systèmes (2017). Materials Studio 2018 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H., and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns or organic compounds,” Acc. Chem. Res. 23(4), 120126.Google Scholar
Favre-Nicolin, V., and Černý, R. (2002). “FOX, “Free Objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.Google Scholar
Kresse, G., and And Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.Google Scholar
Larson, A. C., and Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS), (Los Alamos National Laboratory Report LAUR 86-784).Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.Google Scholar
Löscher, W., Puskarjov, M., and Kaila, K. (2013). “Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments,” Neuropharmacology 69, 6274.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
MDI (2017). Jade 9.8 (Materials Data. Inc., Livermore, CA).Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Informatics 3, 33.Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. D. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci. 56(3), 455465.Google Scholar
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem UT).Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Tata, P., Venkataramanan, R., and Sahota, S. (1993). “Bumetanide,” Anal. Profiles Drug Subst. Excipients 22, 107144.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20(2), 7983.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). http://hirshfeldsurface.net.Google Scholar
van de Streek, J., and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater., 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.Google Scholar
Wavefunction, Inc. (2017). Spartan ‘16 Version 2.0.1, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Supplementary material: File

Diulus et al. supplementary material

Diulus et al. supplementary material 1

Download Diulus et al. supplementary material(File)
File 2.7 MB
Supplementary material: File

Diulus et al. supplementary material

Diulus et al. supplementary material 2

Download Diulus et al. supplementary material(File)
File 5.3 KB
Supplementary material: File

Diulus et al. supplementary material

Diulus et al. supplementary material 3

Download Diulus et al. supplementary material(File)
File 2.5 KB