Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T04:16:26.887Z Has data issue: false hasContentIssue false

Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl

Published online by Cambridge University Press:  16 June 2014

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616
Cyrus E. Crowder
Affiliation:
ICDD, 12 Campus Boulevard, Newtown Square, Pennsylvania, 19073-3273
Kai Zhong
Affiliation:
ICDD, 12 Campus Boulevard, Newtown Square, Pennsylvania, 19073-3273
Timothy G. Fawcett
Affiliation:
ICDD, 12 Campus Boulevard, Newtown Square, Pennsylvania, 19073-3273
Matthew R. Suchomel
Affiliation:
Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Commercial atomoxetine hydrochloride crystallizes in the orthorhombic space group P212121 (#19), with a = 7.362 554(12), b = 13.340 168(27), c = 16.701 887(33) Å, V = 1640.421(5) Å3, and Z = 4. The structure was solved and refined using synchrotron powder diffraction data, and Rietveld and density functional techniques. The most prominent feature of the structure is zigzag chains of N–H···Cl hydrogen bonds along the a-axis. The powder pattern has been submitted to the ICDD for inclusion in future releases of the Powder Diffraction File™.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apra, E., Causa, M., Prencipe, M., Dovesi, R., and Saunders, V. R. (1993). “On the structural properties of NaCl. An ab initio study of the B1-B2 phase transition,” J. Phys. Condens. Matter 5, 29692976.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, M.-L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Edit. Eng. 34, 15551573.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gathier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the lab of Bravais,” Amer. Mineral. 22, 446467.Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Zeit. Krist. 220, 571573.Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23, 120126.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Miner. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
ICDD (2013). PDF-4+ 2011 (Database), edited by Dr. Kabekkodu, S., International Centre for Diffraction Data, Newtown Square, PA, USA.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, pp. 86–784.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Jurtz, C., Antao, S. M., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Sync. Rad. 15, 427432.Google Scholar
Malpezzi, L., Bedeschi, A., and Pizzocaro, R. (2007). “Polymorph of atomoxetine hydrochloride in crystalline form,” European Patent 1,798,215.Google Scholar
MDI. (2012). Jade 9.5, Materials Data Inc., Livermore CA.Google Scholar
Motherwell, W. D. S., Shields, G. P., and Allen, F. H. (2000). “Automated assignment of graph-set descriptors for crystallographically symmetric molecules,” Acta Crystallogr. B: Struct. Sci. 56, 466473.Google Scholar
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “OpenBabel: an open chemical toolbox,” J. Cheminformatics 3, 114; DOI: 10.1186/1758-2946-3-33.Google Scholar
Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Sync. Rad. 15, 427432.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Stephenson, G. A. and Liang, C. (2006). “Structural determination of the stable and meta-stable forms of atomoxetine HCl using single crystal and powder X-ray diffraction methods,” J. Pharm. Sci. 95, 16771683.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wavefunction, Inc. (2011). Spartan ‘10 version 1.1.0, Wavefunction Inc., 18401 Von Karman Avenue, Suite 370, Irvine CA 92612.Google Scholar