Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T22:11:18.577Z Has data issue: false hasContentIssue false

Crystal structure and local order of nanocrystalline zirconia-based solid solutions

Published online by Cambridge University Press:  06 March 2012

I. O. Fábregas
Affiliation:
Centro de Investigaciones en Sólidos (CINSO), Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas-Consejo Nacional de Investigaciones Científicas y Técnicas (CITEFA-CONICET), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires, Argentina
D. G. Lamas
Affiliation:
Centro de Investigaciones en Sólidos (CINSO), Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas-Consejo Nacional de Investigaciones Científicas y Técnicas (CITEFA-CONICET), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires, Argentina
L. M. Acuña
Affiliation:
Centro de Investigaciones en Sólidos (CINSO), Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas-Consejo Nacional de Investigaciones Científicas y Técnicas (CITEFA-CONICET), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires, Argentina
N. E. Walsöe de Reca
Affiliation:
Centro de Investigaciones en Sólidos (CINSO), Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas-Consejo Nacional de Investigaciones Científicas y Técnicas (CITEFA-CONICET), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires, Argentina
A. F. Craievich
Affiliation:
Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R 187, 05508-900 São Paulo, São Paulo, Brazil
M. C. A. Fantini
Affiliation:
Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R 187, 05508-900 São Paulo, São Paulo, Brazil
R. J. Prado
Affiliation:
Departamento de Física, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Av. Fernando Corrêa s/n, Coxipó, 78060-900 Cuiabá, Mato Grosso, Brazil

Abstract

Crystal and local structures (long- and short-range order, respectively) of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents (6 and 2.8 mol %, respectively) exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents (16 and 12 mol %, respectively) have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998). “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Phys. Rev. BPRBMDO 58, 75657576. prb, PRBMDO CrossRefGoogle Scholar
Chadwick, A.V., Mountjoy, G., Nield, V.M., Poplett, I.J. F., Smith, M.E., Strange, J.H., and Tucker, M.G. (2001). “Solid-state NMR and X-ray studies of the structural evolution of nanocrystalline zirconia,” Chem. Mater.CMATEX 13, 12191229. cma, CMATEX CrossRefGoogle Scholar
Deportes, C., Duclot, M., Fabry, P., Fouletier, J., Hammou, A., Kleitz, M., Siebert, E., and Souquet, J.L. (1994). Electrochimie des Solides (Presses Universitaires de Grenoble, Grenoble, France).Google Scholar
Durrani, S.K., Akhtar, M., Ahmad, M., and Hussain, M.A. (2006). “Synthesis and characterization of low density calcia stabilized zirconia ceramic for high temperature furnace application,” Mater. Chem. Phys.MCHPDR 100, 324328. mcp, MCHPDR CrossRefGoogle Scholar
Fábregas, I.O., Fuentes, R.O., Lamas, D.G., Fernández de Rapp, M.E., Walsöe de Reca, N.E., Fantini, M.C. A., Craievich, A.F., Prado, R.J., Millen, R.P., and Temperini, M.L. A. (2006). “Local structure of the metal-oxygen bond in compositionally homogeneous, nanocrystalline zirconia-ceria solid solutions synthesized by a gel-combustion process,” J. Phys.: Condens. MatterJCOMEL 18, 78637881. jcz, JCOMEL Google Scholar
Fábregas, I.O., Lamas, D.G., Acuña, L.M., Fantini, M.C. A., Craievich, A.F., and Prado, R.J. (2008). “Crystal structure and local atomic order of nanocrystalline ZrO2–Y2O3 solid solutions II: Extended X-ray absorption fine structure spectroscopy study,” J. Phys.: Condens. Matter (in preparation).Google Scholar
Fabris, S., Paxton, A.T., and Finnis, M.W. (2002). “A stabilization mechanism of zirconia based on oxygen vacancies only,” Acta Mater.ACMAFD 50, 51715178. acz, ACMAFD CrossRefGoogle Scholar
Ferreira, F.F., Granado, E., Carvalho, W. Jr., Kycia, S.W., Bruno, D., and Droppa, R. Jr. (2006). “X-ray powder diffraction beamline at D10B of LNLS: application to the Ba2FeReO6 double perovskite,” J. Synchrotron Radiat.JSYRES 13, 4653. jsy, JSYRES CrossRefGoogle Scholar
Fornasiero, P., Fonda, E., Monte, R.D., Vlaic, G., Kašpar, J., and Graziani, M. (1999). “Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides,” J. Catal.JCTLA5 187, 177185. jtl, JCTLA5 CrossRefGoogle Scholar
Giacovazzo, C., (Ed.) (1992). Fundamentals of Crystallography (International Union of Crystallography Texts on Crystallography 2) (Oxford U. P., New York), p. 148.Google Scholar
Hellwig, Ch., Streit, M., Blair, P., Tverberg, T., Klaassen, F.C., Schram, R.P. C., Vettraino, F., and Yamashita, T. (2006). “Inert matrix fuel behaviour in test irradiations,” J. Nucl. Mater.JNUMAM 352, 291299. jnu, JNUMAM CrossRefGoogle Scholar
Ho, S.-M. (1982). “On the structural chemistry of zirconium oxide,” Mater. Sci. Eng.MSCEAA 54, 2329. mse, MSCEAA CrossRefGoogle Scholar
Horiuchi, H., Schultz, A.J., Leung, P.C. W., and Williams, J.M. (1984). “Time-of-flight neutron diffraction study of a single crystal of yttria-stabilized zirconia, Zr(Y)O1.862, at high temperature and in an applied electric field,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 40, 367372. acl, ASBSDK CrossRefGoogle Scholar
Juárez, R.E., Lamas, D.G., Lascalea, G.E., and Walsöe de Reca, N.E. (1999). “Synthesis and structural properties of zirconia-based nanocrystalline powders and fine-grained ceramics,” Defect Diffus. ForumDDAFE7 177–178, 126. ddf, DDAFE7 Google Scholar
Khan, M.S., Islam, M.S., and Bates, D.R. (1998). “Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study,” J. Mater. Chem.JMACEP 8, 22992307. jtc, JMACEP CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York), 2nd ed., p. 618.Google Scholar
Lamas, D.G., Fuentes, R.O., Fábregas, I.O., Fernández de Rapp, M.E., Lascalea, G.E., Casanova, J.R., Walsöe de Reca, N.E., and Craievich, A.F. (2005). “Synchrotron X-ray diffraction study of the tetragonal-cubic phase boundary of nanocrystalline ZrO2–CeO2 synthesized by a gel-combustion process,” J. Appl. Crystallogr.JACGAR 38, 867873. acr, JACGAR CrossRefGoogle Scholar
Lamas, D.G., Juárez, R.E., Lascalea, G.E., and Walsöe De Reca, N.E. (2001). “Synthesis of compositionally homogeneous, nanocrystalline ZrO2-35 mol% CeO2 powders by gel-combustion,” J. Mater. Sci. Lett.JMSLD5 20, 14471449. jml, JMSLD5 CrossRefGoogle Scholar
Lamas, D.G., Lascalea, G.E., Juárez, R.E., Djurado, E., Pérez, L., and Walsöe de Reca, N.E. (2003). “Metastable forms of the tetragonal phase in compositionally homogeneous, nanocrystalline zirconia-ceria powders synthesised by gel-combustion,” J. Mater. Chem.JMACEP 13, 904910. jtc, JMACEP CrossRefGoogle Scholar
Lamas, D.G. and Walsöe de Reca, N.E. (2000). “X-ray diffraction study of compositionally homogeneous, nanocrystalline yttria-doped zirconia powders,” J. Mater. Sci.JMTSAS 35, 55635567. jmt, JMTSAS CrossRefGoogle Scholar
Lascalea, G.E., Lamas, D.G., Pérez, L., Cabanillas, E.D., and Walsöe de Reca, N.E. (2004). “Synthesis of ZrO2-15 mol% CeO2 nanopowders by a pH-controlled nitrate-glycine process,” Mater. Lett.MLETDJ 58, 24562460. mal, MLETDJ CrossRefGoogle Scholar
Lee, W.E. and Rainforth, W.M. (1994). Ceramic Microstructures: Property Control by Processing (Chapman and Hall, London), p. 317.Google Scholar
Li, P., Chen, I.-W., and Penner-Hahn, J.E. (1993). “X-ray-absorption studies of zirconia polymorphs. II. Effect of Y2O3 dopant on ZrO2 structure,” Phys. Rev. BPRBMDO 48, 1007410081. prb, PRBMDO CrossRefGoogle ScholarPubMed
Mastelaro, V.R., Briois, V., de Souza, D.P. F., and Silva, C.L. (2003). “Structural studies of a ZrO2–CeO2 doped system,” J. Eur. Ceram. Soc.JECSER 23, 273282. jeu, JECSER CrossRefGoogle Scholar
Morinaga, M., Cohen, J.B., and Faber, J. Jr. (1980). “X-ray diffraction study of Zr(Ca,Y)O2−x. II. Local ionic arrangements,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN 36, 520530. aca, ACACBN CrossRefGoogle Scholar
Newville, M., Ravel, B., Haskel, D., Rehr, J.J., Stern, E.A., and Yacoby, Y. (1995). “Analysis of multiple-scattering XAFS data using theoretical standards,” Physica BPHYBE3 208–209, 154156. phb, PHYBE3 CrossRefGoogle Scholar
Pattanaik, S., Huffman, G.P., Sahu, S., and Lee, R.J. (2004). “X-ray absorption fine structure spectroscopy and X-ray diffraction study of cementitious materials derived from coal combustion by-products,” Cem. Concr. Res.CCNRAI 34, 12431249. ccn, CCNRAI CrossRefGoogle Scholar
Peters, F., Schwarz, K., and Epple, M. (2000). “The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis,” Thermochim. ActaTHACAS 361, 131138. tha, THACAS CrossRefGoogle Scholar
Ressler, T. (1998). “WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-Windows,” J. Synchrotron Radiat.JSYRES 5, 118122. jsy, JSYRES CrossRefGoogle ScholarPubMed
Rodríguez-Carvajal, J. (1990). “FullProf: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Rush, G.E., Chadwick, A.V., Kosacki, I., and Anderson, H.U. (2000). “An EXAFS study of nanocrystalline yttrium stabilized cubic zirconia films and pure zirconia powders,” J. Phys. Chem. BJPCBFK 104, 9597–6906. bfk, JPCBFK CrossRefGoogle Scholar
Silva, V.V. and Lameiras, F.S. (2000). “Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite,” Mater. Charact.MACHEX 45, 5159. mac, MACHEX CrossRefGoogle Scholar
Sowrey, F.E., Skipper, L.J., Pickup, D.M., Drake, K.O., Lin, Z., Smith, M.E., and Newport, R.J. (2004). “Systematic empirical analysis of calcium-oxygen coordination environment by calcium K-edge XANES,” Phys. Chem. Chem. Phys.PPCPFQ 6, 188192. 97v, PPCPFQ CrossRefGoogle Scholar
Stapper, G., Bernasconi, M., Nicoloso, N., and Parrinello, M. (1999). “Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia,” Phys. Rev. BPRBMDO 59, 797810. prb, PRBMDO CrossRefGoogle Scholar
Steele, B.C. H. (1996). “Materials for high-temperature fuel cells,” Philos. Trans. R. Soc. London, Ser. APTRMAD 354, 16951710. ptr, PTRMAD Google Scholar
Tolentino, H., Cezar, J.C., Cruz, D.Z., Compagnon-Cailhol, V., Tamura, E., and Martins Alves, M.C. (1998). “Commissioning and first results of the LNLS XAFS beamline,” J. Synchrotron Radiat.JSYRES 5, 521523. jsy, JSYRES CrossRefGoogle ScholarPubMed
Tommaseo, C.E., and Kersten, D.M. (2002). “Aqueous solubility diagrams for cementitious waste stabilization systems. 3. Mechanism of zinc immobilizaton by calcium silicate hydrate,” Environ. Sci. Technol.ESTHAG 36, 29192925. est, ESTHAG CrossRefGoogle ScholarPubMed
Trovarelli, A., (Ed.) (2002). Catalysis by Ceria and Related Materials (Imperial College Press, London).CrossRefGoogle Scholar
Vlaic, G., Fornasiero, P., Geremia, S., Kašpar, J., and Graziani, M. (1997). “Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr–O local structure,” J. Catal.JCTLA5 168, 386392. jtl, JCTLA5 CrossRefGoogle Scholar
Vlaic, G., Monte, R.D., Fornasiero, P., Fonda, E., Kašpar, J., and Graziani, M. (1999). “Redox property-local structure relationships in the Rh-loaded CeO2–ZrO2 mixed oxides,” J. Catal.JCTLA5 182, 378389. jtl, JCTLA5 CrossRefGoogle Scholar
Yaparpalvi, R., Loyalka, S.K., and Tompson, R.V. Jr. (1994). “Production of spherical ZrO2–Y2O3 and ZnO particles,” J. Biomed. Mater. Res.JBMRBG 28, 10871093. jbg, JBMRBG CrossRefGoogle ScholarPubMed
Yashima, M., Sasaki, S., Kakihana, M., Yamaguchi, Y., Arashi, H., and Yoshimura, M. (1994). “Oxygen-induced structural change of the tetragonal phase around the tetragonal-cubic phase boundary in ZrO2–YO1.5 solid solutions,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 50, 663672. acl, ASBSDK CrossRefGoogle Scholar
Yashima, M., Kakihana, M., and Yoshimura, M. (1996). “Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application,” Solid State IonicsSSIOD3 86–88, 11311149. ssi, SSIOD3 CrossRefGoogle Scholar
Yashima, M., Sasaki, S., and Yamaguchi, Y. (1998). “Internal distortion in ZrO2–CeO2 solid solutions: neutron and high-resolution synchrotron x-ray diffraction study,” Appl. Phys. Lett.APPLAB 72, 182184. apl, APPLAB CrossRefGoogle Scholar
Yuren, W., Kunquan, L., Dazhi, W., Zhonghua, W., and Zhengzhi, F. (1994). “The EXAFS study of nanocrystalline zirconia,” J. Phys.: Condens. MatterJCOMEL 6, 633640. jcz, JCOMEL Google Scholar