Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T22:03:02.531Z Has data issue: false hasContentIssue false

Crystal data and X-ray powder diffraction data of two derivatives of 4-chloro-2,2-iminodibenzoic acid: diethyl 4-chloro-2,2-iminodibenzoate, C18H18ClNO4, and dimethyl 4-chloro-2,2-iminodibenzoate, C16H14ClNO4

Published online by Cambridge University Press:  10 January 2013

Héctor Novoa de Armas*
Affiliation:
Center of Pharmaceutical Chemistry, Analytical Department, P.O. Box 16042, Havana, Cuba
Armando Paneque Quevedo
Affiliation:
Center of Pharmaceutical Chemistry, Analytical Department, P.O. Box 16042, Havana, Cuba
José Antonio Henao Martínez
Affiliation:
Industrial University of Santander, Faculty of Sciences, Department of Chemistry, P.O. Box 678, Bucaramanga, Santander, Colombia
*
a) Author to whom correspondence should be addressed. Present address: K. U. Leuven Laboratorium voor Analitysche Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen Van Evenstraat 4, 3000-Leuven, Belgium.

Abstract

Two derivatives of 4-chloro-2,2-iminodibenzoic acid: diethyl 4-chloro-2,2-iminodibenzoate, C18H18ClNO4, and dimethyl 4-chloro-2,2-iminodibenzoate C16H14ClNO4, have been investigated by means of X-ray powder diffraction. The unit cell dimensions were determined from diffractometer methods, using monochromatic CuKα1 radiation, and evaluated by indexing programs. The monoclinic cell found for diethyl 4-chloro-2,2-iminodibenzoate was a=21.332(3) Å, b=7.889(2) Å, c=10.156(2) Å, β=91.43(1)°, Z=4, space group P2 (No. 3), Pm (No. 6), or P2/m (No. 10), Dx=1.351 mg/m3. The cell found for this compound is in good agreement with the one obtained from single crystal X-ray diffractometry. The monoclinic cell found for dimethyl 4-chloro-2,2-iminodibenzoate has the dimensions a=15.962(2) Å, b=5.151(2) Å, c=12.590(2) Å, β=98.35(1)°. Z=4, space group P2 (No. 3), Pm (No. 6), or P2/m (No. 10), Dx=2.073 mg/m3.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108.Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS80: A Fortran Program for Crystallographic Data Evaluation. Natl. Bur. Stand. Tech. (U.S.) Note No. 1141. (NBS*AIDS83 is an expanded version of NBS*AIDS80).Google Scholar
NovoaDe Armas, H. De Armas, H., Pellón Comdom, R., Pomés Hernández, R., and Duque Rodriguez, J. (1996). “Crystal data and X-ray powder diffraction data of lobenzarit acid and lobenzarit disodium,” Powder Diffr. 11, 7274.Google Scholar
Pellón Cómdom, R. (1992). “Procedures for the synthesis of N-phenylanthranilic acids derivatives (in Spanish)” Cuban Patent No. 22105.Google Scholar
Rigaku X-ray diffractometer system, Rigaku International Corporation. (1991). Shinjuku-Ku, Tokyo, Japan.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Suzuki, Y.Kikuchi, M.Morita, T.Haneda, M.Nagai, H.Masao, I.Yutani, Y.Kuriki, Y.Mituhashi, K.Shiba, M. (1984). “Physico-chemical properties and stability of lobenzarit disodium,” Iyakuhin Kenkyu, 15, 195206.Google Scholar
Werner, P. E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. 18, 367370.Google Scholar