Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T01:25:14.206Z Has data issue: false hasContentIssue false

CONVAS2: A program for the merging of diffraction data

Published online by Cambridge University Press:  29 February 2012

Matthew R. Rowles*
Affiliation:
CSIRO Process Science and Engineering/CSIRO Light Metals National Research Flagship, P.O. Box 312, Clayton South, Victoria 3168, Australia
*
a)Electronic mail: [email protected]

Abstract

A computer program is presented that allows for the merging of diffraction patterns collected at multiple positions on the Powder Diffraction beamline of the Australian Synchrotron. It is also generally applicable to detector systems based on other modular detectors. The program allows for the interpolation of data to a constant 2θ step size and to normalise intensities to beam current and/or monitor count rate.

Type
Computer Program
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apache Software Foundation (2004). APACHE LICENSE, Version 2.0 (Computer Software), Los Angeles, CA <http://www.apache.org/licenses/LICENSE-2.0.txt>..>Google Scholar
Apache Software Foundation (2009). COMMONS: MATHS 2.0 (Computer Software), Los Angeles, CA.Google Scholar
Bevington, P. R. and Robinson, D. K. (1992). Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York), p. 59.Google Scholar
Bruker AXS (2009). TOPAS V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data, Version 4.2 (Computer Software), Bruker AXS, Karlsruhe, Germany.Google Scholar
Burden, R. L. and Faires, J. D. (1989). Numerical Analysis (PWS-KENT, Boston), pp. 126131.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Patterson, B. D., Abela, R., Auderset, H., Chena, Q., Fauth, F., Gozzo, F., Ingold, G., Kuhne, H., Lange, M., Maden, D., Meister, D., Pattison, P., Schmidt, T., Schmitt, B., Schulze-Briese, C., Shi, M., Stampanoni, M., and Willmott, P. R. (2005). “The materials science beamline at the Swiss Light Source: Design and realization,” Nucl. Instrum. Methods Phys. Res. A NIMAER 540, 4267.10.1016/j.nima.2004.11.018CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Scarlett, N. V. Y., Madsen, I. C., Evans, J. S. O., Coelho, A. A., McGregor, K., Rowles, M. R., Lanyon, M. R., and Urban, A. J. (2009). “Energy dispersive diffraction studies of inert anodes,” J. Appl. Crystallogr. JACGAR 42, 502512.10.1107/S0021889809008681CrossRefGoogle Scholar
Schmitt, B., Brönnimann, C., Eikenberry, E. F., Gozzo, F., Hörmann, C., Horisberger, R., and Patterson, B. (2003). “Mythen detector system,” Nucl. Instrum. Methods Phys. Res. A NIMAER 501, 267272.10.1016/S0168-9002(02)02045-4CrossRefGoogle Scholar
Wallwork, K. S., Kennedy, B. J., and Wang, D. (2007). “The high resolution Powder Diffraction beamline for the Australian Synchrotron,” in Proceedings of the Ninth International Conference on Synchrotron Radiation Instrumentation, edited by Choi, J.-Y. and Rah, S. (American Institute of Physics, Daegu, Korea), pp. 879882.Google Scholar
Young, R. A., (1993). in The Rietveld Method, edited by Young, R. A. (Oxford University Press, New York), p. 22.CrossRefGoogle Scholar