Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T19:05:55.216Z Has data issue: false hasContentIssue false

Complete sets of factors for absorption correction and air scattering subtraction in X-ray powder diffraction of loosely packed samples

Published online by Cambridge University Press:  10 January 2013

Stefano Ottani
Affiliation:
C.N.R., Centro Studi Fisica Macromolecole, Via Selmi 2, 40126 Bologna, Italy
Pietro Riello
Affiliation:
Dipartimento di Chimica Fisica, Universita' degli Studi di Venezia, Calle Larga S.Marta 2137, 30123 Venezia, Italy
Stefano Polizzi
Affiliation:
Dipartimento di Chimica Fisica, Universita' degli Studi di Venezia, Calle Larga S.Marta 2137, 30123 Venezia, Italy

Abstract

Complete sets of correction factors for absorption and air scattering effects in X-ray powder diffraction are reported. Both symmetrical reflection and transmission techniques are considered and boundary conditions to be tested for any given value of scattering angles are listed. This may prove particularly useful on coding computer programs for correction of raw intensity data files. Effects of interstitial volume on correction for absorption and subtraction of air scattering were investigated. For samples of high interstitial volume, like loosely packed powders or aerogels, the contribution from air trapped inside the specimen is significant and leads to expressions of the air scattering correction factors different from those commonly reported in the literature.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, L. E. (1969). X-Ray Diffraction Methods in Polymer Science (Wiley, New York).Google Scholar
Azaroff, L. V. (1968). Elements of X-ray Crystallography (McGraw-Hill, New York).Google Scholar
De Wolff, P. M., Taylor, M. J., and Parrish, W. (1956). J. Appl. Phys. 30, 6369.CrossRefGoogle Scholar
Dineen, C. (1973). J. Appl. Cryst. 6, 474477.CrossRefGoogle Scholar
Ergun, S. (1967). “X-Ray Studies of Carbon” in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr. (Dekker, New York), Vol. III, pp. 225226.Google Scholar
Hermann, H., and Ermrich, M. (1987). Acta Cryst. A 43, 401405.CrossRefGoogle Scholar
Klug, H. P., and Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York).Google Scholar
Matulis, C. F., and Taylor, J. C. (1992). Powder Diffrac. 7, 8994.CrossRefGoogle Scholar
Milberg, M. E. (1958). J. Appl. Phys. 29, 6465.CrossRefGoogle Scholar
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 6571.CrossRefGoogle Scholar
Ruland, W. (1961). Acta Cryst. 14, 11801185.CrossRefGoogle Scholar
Suortti, P. (1972). J. Appl. Cryst. 5, 325331.CrossRefGoogle Scholar
Suortti, P., and Jennings, L. D. (1971). J. Appl. Cryst. 4, 3743.CrossRefGoogle Scholar
Taylor, A. (1944a). Phil. Mag. Ser. 7, 35, 215229.CrossRefGoogle Scholar
Taylor, A. (1944b). Phil. Mag. Ser. 7, 35, 632638.CrossRefGoogle Scholar
Vonk, C. G. (1973). J. Appl. Cryst. 6, 148152.CrossRefGoogle Scholar
Wilchinsky, Z. W. (1951). Acta Cryst. 4, 19.CrossRefGoogle Scholar
Wilson, A. J. C. (1963). Mathematical Theory of X-Ray Powder Diffractometry (N. V. Philips, Eindhoven).Google Scholar
Wilson, V. C., and Kasper, J. S. (1954). Phys. Rev. 95, 14081411.CrossRefGoogle Scholar