Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T18:21:10.455Z Has data issue: false hasContentIssue false

Chemical preparation of aluminum borate whiskers

Published online by Cambridge University Press:  10 January 2013

I. Erkin Gönenli
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06531, Turkey
A. Cüneyt Tas
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06531, Turkey

Abstract

Aluminum borate (9Al2O3·2B2O3) whiskers were chemically synthesized in potassium sulphate flux by using the starting chemicals of aluminum sulphate and boric acid. The synthesis temperature of 1075 °C was found to be the optimum with respect to whisker morphology. A tentative X-ray diffraction (XRD) pattern was suggested for the whiskers produced after heating at 1150 °C. The product purity, phase composition, and whisker morphology were investigated by XRD, energy dispersive X-ray spectroscopy, and scanning electron microscopy, respectively.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applemen, D. E. and Evans, H. T. (1973). “Least-squares and Indexing Software for XRD Data,” U.S. Geological Survy, Computer Contribution No. 20, U.S. National Technical Information Service, Document No: PB-216188.Google Scholar
Baumann, H. N., and Moore, C. H. (1942).J. Am. Ceram. Soc. 25, 391.CrossRefGoogle Scholar
Garsche, M., Tillmanns, E., Ahnen, H., Schneider, H., and Kupcik, V. (1991).Eur. J. Mineral. 3, 793.CrossRefGoogle Scholar
Ihara, M., Imai, K., Fukunaga, J., and Yoshida, N. (1980).Yogyo Kyokaishi 88, 77.CrossRefGoogle Scholar
Johnson, R. C., and Alley, J. K. (1965). U.S. Bur. Mines, Rept. Invest. No. 6575.Google Scholar
Li, J. X., Narita, T., Ogawa, J., and Wadasako, M. (1998).J. Mater. Sci. 33, 2601.CrossRefGoogle Scholar
Narita, T., and Tizuka, T. (1998).J. Ceram. Soc. Jpn. 106, 402.CrossRefGoogle Scholar
Ray, S. P. (1992).J. Am. Ceram. Soc. 75, 2605.CrossRefGoogle Scholar
Readey, M. J. (1992).J. Am. Ceram. Soc. 75, 3452.CrossRefGoogle Scholar
Scholze, H. (1956).Z. Anorg. Allg. Chem. 284, 272.CrossRefGoogle Scholar
Sokolova, E. V., Azizov, A. V., Simonov, M. A., Leonyuk, N. I., and Belov, N. V. (1978).Sov. Phys. Dokl. 23, 814.Google Scholar
(a)Suganuma, K., Fujita, T., Suzuki, N., and Niihara, K. (1990).J. Mater. Sci. Lett. 9, 633; (b) Shikoku Corporation; http://www.shikoku.co.jp/eng/product/chem/fine/alumiCrossRefGoogle Scholar
Tizuka, T., Narita, T., and Sakane, T. (1998).J. Ceram. Soc. Jpn. 106, 327.Google Scholar
Wada, H., Sakane, K., Kitamura, T., and Hata, H. (1996).J. Mater. Sci. 31, 537.CrossRefGoogle Scholar
Wada, H., Sakane, K., Kitamura, T., Hata, H., and Kambara, H. (1991).J. Mater. Sci. Lett. 10, 1076.CrossRefGoogle Scholar
Wada, H., Sakane, K., Kitamura, T., and Hata, H. (1991). Ceramic Powder Science IV, Ceramic Transactions, Vol. 22, edited by S. Hirano, G. L. Messing, and H. Hausner (American Ceramic Society, Westerville, OH), p. 95.Google Scholar