Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T20:59:19.637Z Has data issue: false hasContentIssue false

Applications of the Rietveld method to quantify the crystalline phases of Portland cement clinker doped with nickel and chromium

Published online by Cambridge University Press:  06 March 2012

Andréa Vidal Ferreira
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Comissão Nacional de Energia Nuclear (CNEN), PO 941, 30123-970 Belo Horizonte, Minas Gerais, Brazil
Ariete Righi
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, 30123-970 Belo Horizonte, Minas Gerais, Brazil
Fernando Gabriel Silva Araújo
Affiliation:
Departamento de Física, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, Minas Gerais, Brazil
Denise Crocce Romano Espinosa
Affiliation:
Departamento de Engenharia Metalúrgica e de Materiais, Universidade de São Paulo, 05508-900 São Paulo, São Paulo, Brazil
Jorge Alberto Soares Tenório
Affiliation:
Departamento de Engenharia Metalúrgica e de Materiais, Universidade de São Paulo, 05508-900 São Paulo, São Paulo, Brazil

Abstract

The effects of chromium or nickel oxide additions on the composition of Portland clinker were investigated by X-ray powder diffraction associated with pattern analysis by the Rietveld method. The co-processing of industrial waste in Portland cement plants is an alternative solution to the problem of final disposal of hazardous waste. Industrial waste containing chromium or nickel is hazardous and is difficult to dispose of. It was observed that in concentrations up to 1% in mass, the chromium or nickel oxide additions do not cause significant alterations in Portland clinker composition.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASTM (1998). “ASTM C 150 Standard Specification for Portland Cement,” in 1998 Annual Book of ASTM Standards: Section 4, Construction Concrete and Aggregates (ASTM International, West Conshohocken, PA), Vol. 04.02, p. 134.Google Scholar
Chromy, S. (1974). “Mechanisms of white clinker formation,” Proceedings of the VI International Congress on the Chemistry of Cement, Moscow, USSR, Vol. 3, September 1974, pp. 409–418.Google Scholar
Colville, A.A. and Geller, S. (1972). “The crystal structure of Ca2Fe1.43Al0.57O5 and Ca2Fe1.28Al0.72O5,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 28, 31963200. acb, ACBCAR CrossRefGoogle Scholar
Dalton, J.L., Gardner, K.H., Seager, T.P., Weimer, M.L., Spear, J.C. M., and Magee, B.J. (2004). “Properties of Portland cement made from contaminated sediments,” Resour. Conserv. Recycl. 41, 227241.CrossRefGoogle Scholar
De la Torre, A.G., and Aranda, M.A. G. (2003). “Accuracy in Rietveld quantitative phase analysis in Portland cements,” J. Appl. Crystallogr.JACGAR 36, 11691176. acr, JACGAR CrossRefGoogle Scholar
De la Torre, A.G., Bruque, S., Campo, J., and Aranda, M.A. G. (2002). “The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analysis,” Cem. Concr. Res.CCNRAI 32, 13471356. ccn, CCNRAI CrossRefGoogle Scholar
De la Torre, A.G., Cabeza, A., Calvente, A., Bruque, S., and Aranda, M.A. G. (2001). “Full phase analysis of Portland clinker by penetrating synchrotron powder diffraction,” Anal. Chem.ANCHAM 73, 151156. anc, ANCHAM CrossRefGoogle ScholarPubMed
De la Torre, A.G., Cabeza, A., Losilla, E.R., and Aranda, M.A. G. (2006). “Quantitative phase analysis of ordinary Portland cements using synchrotron radiation powder diffraction,” Z. Kristallogr.ZEKRDZ 2006 (suppl. 23), 587592. zek, ZEKRDZ CrossRefGoogle Scholar
De la Torre, A.G., Losilla, E.R., Cabeza, A., and Aranda, M.A. G. (2005). “High-resolution synchrotron powder diffraction analysis of ordinary Portland cements: Phase coexistence of alite,” Nucl. Instrum. Methods Phys. Res. BNIMBEU 238, 8791. nib, NIMBEU CrossRefGoogle Scholar
Dunstetter, F., de Noirfontaine, M.-N., and Courtial, M. (2006). “Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 1. Structural data: review and unified analysis,” Cem. Concr. Res.CCNRAI 36, 3953. ccn, CCNRAI CrossRefGoogle Scholar
Karstensen, K.H. (2005). “Co-processing: myths and truths in dioxins emissions,” VII SIMAI Seminário Internacional de Meio Ambiente Industrial, ABCP, São Paulo, Brazil 〈http://www.abcp.org.br/simai_pdf/VII_simai.htm〉.Google Scholar
Mondal, P. and Jeffery, J.W. (1975). “The crystal structure of tricalcium aluminate, Ca3Al2O6,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 31, 689696. acb, ACBCAR CrossRefGoogle Scholar
Mumme, W.G., Hill, R.J., Busnell-Wye, G., and Segnit, E.R. (1995). “Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases,” Neues Jahrb. Mineral., Abh.NJMIAK 169, 3568. njm, NJMIAK Google Scholar
Neubauer, J., Pöllmann, H., and Meyer, H.W. (1997). “Quantitative X-ray analysis of OPC clinker by Rietveld refinement,” 10th International Congress on the Chemistry of Cement, Göteborg, Sweden, Vol. 35, 3v007 12.Google Scholar
Nishi, F., Takeuchi, Y., and Maki, I. (1985). “Tricalcium silicate Ca3SiO5: the monoclinic superstructure,” Z. Kristallogr.ZEKRDZ 172, 297314. zek, ZEKRDZ CrossRefGoogle Scholar
de Noirfontaine, M.-N., Dunstetter, F., Courtial, M., Gasecki, G., and Signes-Frehel, M. (2006). “Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 2. Modelling alite for Rietveld analysis, an industrial challenge,” Cem. Concr. Res.CCNRAI 36, 5464. ccn, CCNRAI CrossRefGoogle Scholar
Pajares, I., De la Torre, A.G., Martínez-Ramírez, S., Puertas, F., Blanco-Varela, M.-T., and Aranda, M.A. G. (2002). “Quantitative analysis of mineralized white Portland clinkers: The structure of fluorellestadite,” Powder Diffr.PODIE2 17, 281286. pdj, PODIE2 CrossRefGoogle Scholar
Peterson, V.K. (2003). “Diffraction investigations of cement clinker and tricalcium silicate using Rietveld analysis,” Ph.D. thesis, Department of Chemistry, Materials and Forensic Sciences, University of Technology, Sydney, Australia, p. 232.Google Scholar
Peterson, V.K., Ray, A.S., and Hunter, B.A. (2006). “A comparative study of Rietveld phase analysis of cement clinker using neutron, laboratory X-ray, and synchrotron data,” Powder Diffr.PODIE2 21, 1218. pdj, PODIE2 CrossRefGoogle Scholar
Pritula, O., Smrčok, L., and Baumgartner, B. (2003). “On reproducibility of Rietveld analysis of reference Portland cement clinkers,” Powder Diffr.PODIE2 18, 1622. pdj, PODIE2 CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1990). “FullProf: A Program for Rietveld Refinement and Pattern Matching Analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Taylor, H.F. W. (1997). Cement Chemistry (Thomas Telford Publishing, London), 2nd ed., p. 459.Google Scholar
Taylor, J.C., Hinczak, I., and Matulis, C.E. (2000). “Rietveld full-profile quantification of Portland cement clinker: The importance of including a full crystallography of the major phase polymorphs,” Powder Diffr.PODIE2 15, 718. pdj, PODIE2 CrossRefGoogle Scholar