Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T16:56:44.638Z Has data issue: false hasContentIssue false

An analysis of preferred orientation in YBa2Cu3O7–x superconducting films deposited by CVD on single-crystal and polycrystalline substratesa)

Published online by Cambridge University Press:  10 January 2013

E. A. Judson
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332-0245
D. N. Hill
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332-0245
R. A. Young
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332-0245
J. R. Cagle
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332-0245
W. J. Lackey
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332-0245
W. B. Carter
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332-0245
E. K. Barefield
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332-0245

Abstract

YBa2Cu3O7–x films were deposited by chemical vapor deposition (CVD) onto single-crystal MgO, single-crystal Al2O3, and polycrystalline Al2O3 substrates, characterized before and after annealing, and tested for their superconducting properties. The preferred orientation in the films was analyzed (i) with pole figures and (ii) by comparison of experimental x-ray powder diffraction patterns with those calculated for the material using the March–Dollase function to model the degree of preferred orientation. Preferred orientation was significant in as-deposited films, with March coefficients ranging from 0.1–0.5 (random orientation would have a coefficient of 1.0). The (006) pole figures of the films on single crystal substrates exhibited uniquely symmetric patterns. On single-crystal MgO before annealing, a minor secondary orientation of (006) poles in the film was observed in a pattern consistent with the symmetry of major crystallographic directions of MgO. On single-crystal Al2O3 after annealing, a “dual orientation” phenomenon was observed. The high-temperature anneal destroyed the orientation and superconducting properties of the CVD films deposited at high temperatures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Buch, F., Miraglia, S., Santoro, A., and Roth, R. S. (1987). Phys. Rev. B 35, 87788786.CrossRefGoogle Scholar
2Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., and Gambino, R. J. (1987). Phys. Rev. Lett. 58, 26842686.CrossRefGoogle Scholar
3Cullity, B. D. (1987). Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA).Google Scholar
4Dinger, T. R., Worthington, T. K., Gallogher, W. J., and Sandstrom, R. L. (1987). Phys. Rev. Lett. 58, 26872690.CrossRefGoogle Scholar
5Dollase, W. A. (1986). J. Appl. Cryst. 19, 267272.CrossRefGoogle Scholar
6Deyu, L., O'Connor, B. H., Roach, G. I. D., and Cornell, J. B. (1990). Powder Diffr. 5, 7985.CrossRefGoogle Scholar
7Hill, R. J., and Howard, D. J. (1987). J. Appl. Cryst. 20, 467474.CrossRefGoogle Scholar
8Jishan, Z., Xiaoping, J., Jianguo, H., Ming, J., Yang, Y., Zhiya, Z., Yunlong, G., Yajun, T., Guiwen, Q., and Zhuangqi, H. (1988). Superconductor Sci. Technol. 1, 107109.CrossRefGoogle Scholar
9Kang, W. J., Yoshimi, K., Hanada, S., Saito, S., Murayama, Y., Hayashi, S., and Nagata, A. (1990). J. Appl. Phys. 68 (12), 63416346.CrossRefGoogle Scholar
10Knorr, D. B., and Livingston, J. D. (1989). Superconductor Sci. Technol. 1, 302306.Google Scholar
11Lackey, W. J., Carter, W. B., Hanigofsky, J. A., Hill, D. N., Barefield, E. K., Neumeier, G., O'Brien, D. E., Shapiro, M. J., Thompson, J. R., Green, A. J., Moss, T. S., Jake, R. A., and Efferson, K. R. (1990). Appl. Phys. Lett. 56, 11751177.CrossRefGoogle Scholar
12Sakthivel, A., and Young, R. A. (1990). User's Guide to Programs DBWS-9006 and DBWS-9006PC for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns (Georgia Institute of Technology, School of Physics, Atlanta, GA).Google Scholar
13Schulz, L. G. (1949). J. Appl. Phys. 20 (11), 10301033.Google Scholar
14Williams, A., Kwei, G. H., Von Dreele, R. B., Larson, A. C., Raistrick, I. D., and Bish, K. L. (1988). Phys. Rev. B 37(13), 79607962.CrossRefGoogle Scholar
15Rietveld, H. M. (1969). J. Appl. Cryst. 2, 6571.Google Scholar