Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T06:51:15.976Z Has data issue: false hasContentIssue false

XRD profile modeling approach tools to investigate the effect of charge location on hydration behavior in the case of metal exchanged smectite

Published online by Cambridge University Press:  14 November 2013

Marwa Ammar
Affiliation:
UR05/13-01: Physique des Matériaux Lamellaires et Nanomatériaux Hybrides (PMLNMH), Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia Tel.: +216 20 843 705; fax: +216 72 590 566.
Walid Oueslati*
Affiliation:
UR05/13-01: Physique des Matériaux Lamellaires et Nanomatériaux Hybrides (PMLNMH), Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia Tel.: +216 20 843 705; fax: +216 72 590 566.
Hafsia Ben Rhaiem
Affiliation:
UR05/13-01: Physique des Matériaux Lamellaires et Nanomatériaux Hybrides (PMLNMH), Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia Tel.: +216 20 843 705; fax: +216 72 590 566.
Abdesslem Ben Haj Amara
Affiliation:
UR05/13-01: Physique des Matériaux Lamellaires et Nanomatériaux Hybrides (PMLNMH), Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia Tel.: +216 20 843 705; fax: +216 72 590 566.
*
E-mail address: [email protected] (W. Oueslati).

Abstract

This work aims to investigate the hydration behavior and structural properties of two dioctahedral smectites with contrasting location charge (beidellite SbId-1 and montmorillonite SWy-2) according to the nature of the bivalent compensator heavy metal cations (i.e. Hg (II), Ni (II), Ba (II) and Mg (II)). This study is achieved using XRD profile modeling approach based on the simulation of the 00l reflection which allowed us to determine structural characteristics along the c* axis related to the nature, abundance, size, position and organization of exchangeable cation and water molecule in the interlamellar space along the c* axis. The obtained results show that a heterogeneous hydration behavior is systematically observed in all studied samples and the structural models, used to fit samples with tetrahedral charge, are more heterogeneous than smectite with an octahedral sheets substitution. In the case of exchanged beidellite specimen, the proposed models are described by a mixed layer structure with variable abundance containing respectively, dehydrated (0W), mono-hydrated (1W) and bihydrated (2W) layers. Whereas, in the case of the montmorillonite, the absence of 0W hydration state is noted.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W. (1982). “Nomenclature for regular interstratifications,” Am. Mineral. 67, 394398.Google Scholar
Ben Haj Amara, A., Ben Brahim, J., Plançon, A. and Ben Rhaiem, H. (1998). “Étude par Diffraction X des Modes d'Empilement de la Nacrite Hydratée et Deshydratée,” J. Appl. Crystallogr. 31, 654662.Google Scholar
Ben Rhaiem, H., Tessier, D. and Ben Haj Amara, A. (2000). “Mineralogy of the 2 µm fraction of three mixed-layer clays from southern and central Tunisia,” Clay Miner. 35, 375381.Google Scholar
Bérend, I., Cases, J. M., François, M., Uriot, J. P., Michot, L. J., Masion, A. and Thomas, F. (1995). “Mechanism of adsorption and desorption of water vapour by homoionic montmorillonites: 2. the Li+, Na+,K+,Rb+ and Cs+exchanged forms,” Clays Clay Miner. 43, 324336.Google Scholar
Brigatti, M. F., Colonna, S., Malferrari, D., Medici, L. and Poppi, L. (2005). “Mercury adsorption by montmorillonite and vermiculite: a combined XRD, TG-MS, and EXAFS study,” Appl. Clay Sci. 28 (1-4), 18.Google Scholar
Brindley, G. W. and Brown, G. (1980). Crystal Structures of Clay Minerals and their X-ray Identification (Miner. Soc., London), p. 125.CrossRefGoogle Scholar
Cases, J. M., Bérend, I., François, M., Uriot, J. P., Michot, L. J. and Thomas, F. (1997). “Mechanism of adsorption and desorption of water vapour by homoionic montmorillonite: 3. The Mg2+,Ca2+,Sr2+and Ba2+ exchanged forms,” Clays Clay Miner. 45, 822.CrossRefGoogle Scholar
Chávez, M. L., de Pablo, L. and García, T. A. (2010). “Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay,” J. Hazard. Mater. 175 (1-3), 216223.Google Scholar
Drits, V. A. and Sakharov, B. A. (1976). X-ray Structure Analysis of Mixed-Layer Minerals, (Nauka, Moscow), p 256.Google Scholar
Drits, V. A. and Tchoubar, C. (1990). X-ray diffraction by disordered lamellar structures: Theory and applications to microdivided silicates and carbons (Springer-Verlag, Berlin), p 371.Google Scholar
Ferrage, E., Lanson, B., Malikova, N., Plançon, A., Sakharov, B. A. and Drits, V. A. (2005). “New Insights on the Distribution of Interlayer Water in Bi-Hydrated Smectite from X-ray Diffraction Profile Modeling of 00l Reflections,” Chem. Mater. 17, 34993512.Google Scholar
Ferrage, E., Lanson, B., Sakharov, B. A., Geoffroy, N., Jacquot, E. and Drits, V. A. (2007). “Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location,” Amer. Mineral. 92, 17311743.CrossRefGoogle Scholar
Grim, R. E. (1962). Applied Clay Mineralogy (McGraw-Hill Book Company, Inc, New York), p 422.Google Scholar
Kittrick, J. A. (1969). “Quantitative evaluation of the strong-force model for expansion and contraction of vermiculite,” Soil Sci. Soc. Am. J. 33, 222225.Google Scholar
Laird, D. A. (1996). “Model for crystalline swelling of 2:1 phyllosilicatesClays Clay Miner. 44, 553559.Google Scholar
Laird, D. A. (1999). “Layer charge influences on the hydratation of expandle 2:1 phyllosilicates,” Clays Clay Miner. 47, 630636.Google Scholar
Moll, W. F. (2001). “Baseline studies of the clay minerals society source clays: Geological origin,” Clays Clay Miner. 49, 374380.CrossRefGoogle Scholar
Valentina, M., Giordano, G. A. and Paola, A. (2011). “Effect of the Zn2+and Hg2+ Ions on the Structure of Liquid Water,” J. Phys. Chem. A 115, 47984803.Google Scholar
Norrish, K. (1954). “The swelling of montmorillonite,” Discuss. Faraday Soc. 18 120133.Google Scholar
Oueslati, W., Ben Rhaiem, H. and Ben Haj Amara, A. (2011). “XRD investigations of hydrated homoionic montmorillonite saturated by several heavy metal cations,” Desalination 271, 139149.Google Scholar
Oueslati, W., Ben Rhaiem, H. and Ben Haj Amara, A. (2012). “Effect of relative humidity constraint on the metal exchanged montmorillonite performance: An XRD profile modeling approach,” Appl. Surf. Sci. 261, 396404.Google Scholar
Oueslati, W, Karmous, M. S., Ben Rhaiem, H., Lanson, B. and Ben Haj Amara, A. (2007). “Effect of interlayer cation and relative humidity on the hydration properties of a dioctahedral smectite,” Z. Kristallogr. Suppl 26, 417422.CrossRefGoogle Scholar
Post, J. L., Cupp, B. L. and Madsen, F. T. (1997). “Beidellite and associated clays from the DeLamar mine and Florida Mountain area, Idaho,” Clays Clay Miner. 45, 240250.CrossRefGoogle Scholar
Reynolds, R. C. (1986). “The Lorentz-polarization factor and preferred orientation in oriented clay aggregates,” Clays Clay Miner. 34, 359367.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751767.Google Scholar
Sakharov, B. A. and Drits, V. A. (1973). “Mixed-layer kaolinte–montmorillonite: a comparison observed and calculated diffraction patterns,” Clays Clay Miner. 21, 1517.CrossRefGoogle Scholar
Sato, T., Watanabe, T. and Otsuka, R. (1992). “Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites,” Clays Clay Miner. 40, 103113.CrossRefGoogle Scholar
Sen Gupta, S. and Bhattacharyya, K. G. (2008). “Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium,” J. Environ. Manage. 87, 4658.CrossRefGoogle Scholar
Srodon, J., Morgan, D. J., Eslinger, E. V., Eberl, D. D. and Karlinger, M. R. (1986). “Chemistry of illite/smectite and end-member illite,” Clays Clay Miner. 34, 368378.Google Scholar
Tessier, D. (1984). Etude expérimentale de l'organisation des matériaux argileux. Hydratation, gonflement et structure au cours de la dessiccation et de la réhumectation (Thèse Université de Paris VII, France, Publication INRA Versailles) p 124.Google Scholar
Van Olphen, H. (1965). “Thermodynamics of interlayer adsorption of water in clays,” J. Colloid. Sci. 20, 822837.Google Scholar