Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T06:00:16.439Z Has data issue: false hasContentIssue false

X-rays in art and archaeology: An overview

Published online by Cambridge University Press:  06 March 2012

M. Schreiner*
Affiliation:
Institute of Humanities, Sciences and Technologies in Art, Academy of Fine Arts, Schillerplatz 3, A-1010 Vienna Austria
B. Frühmann
Affiliation:
Institute of Humanities, Sciences and Technologies in Art, Academy of Fine Arts, Schillerplatz 3, A-1010 Vienna Austria
D. Jembrih-Simbürger
Affiliation:
Institute of Humanities, Sciences and Technologies in Art, Academy of Fine Arts, Schillerplatz 3, A-1010 Vienna Austria
R. Linke
Affiliation:
Institute of Humanities, Sciences and Technologies in Art, Academy of Fine Arts, Schillerplatz 3, A-1010 Vienna Austria
*
a)Electronic mail: [email protected]

Abstract

An overview of the techniques used in art and archaeology is presented and the applicability of X-ray radiography, X-ray fluorescence (XRF), and X-ray diffraction analysis (XRD) as a tool for nondestructive investigations of objects of art and archaeology is discussed. X-ray radiography, for example, is a standard technique widely used and accepted by art historians, archaeologists, curators, and conservators as this method enables information about the manufacturing process and the condition of an object without “touching” the artifact. XRF and XRD enable a nondestructive determination of the material composition of artifacts and the determination of the crystalline structure of the components too. Air path systems and instruments with the micro-beam of X-ray and synchrotron radiation were applied for the analysis of easel paintings, pigments in paint layers, glass artifacts, and coins.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baer, N. S., and Low, M. J. D. (1982). “Advances in scientific instrumentation for conservation—An overview,” in Science and Technology in the Service of Conservation. Reprints of the IIC-Congress Washington, DC, 3–9 September, pp. 1–4.Google Scholar
Banik, G., Schreiner, M., Stachelberger, H., and Mairinger, F. (1982). Prakt. Metallogr. PMTLA5 19, 104108. pmq, PMTLA5 Google Scholar
Bichlmeier, St., Janssens, K., Heckl, J., Gibson, D., Hoffmann, P., and Ortner, H. M. (2001). X-Ray Spectrom. XRSPAX 30, 814. xrs, XRSPAX Google Scholar
Cesareo, R., Gigante, G. E., Canegallo, P., Castellano, A., Iwanczyk, J. S., and Dabrowski, A. (1996). NIM-AZZZZZZ 380, 440445.CrossRefGoogle Scholar
COPRA (A compact Röntgen analyzer), Project No. STM4-CT-98-2237.Google Scholar
Hochleitner, B., Schreiner, M., Drakopoulos, M., Snigireva, I., and Snigirev, A., see Van Grieken et al.Google Scholar
Jacobi, R. (1941). Angew. Chem. ANCEAD 54, 2829. agc, ANCEAD Google Scholar
Jembrih-Simbürger, D., Neelmeijer, Ch., Schreiner, M., Peev, M., Clausen, Ch., and Krejsa, P. (2000). Microchim. ActaZZZZZZ 133, 151157.CrossRefGoogle Scholar
Jembrih-Simbürger, D., Neelmeijer, Ch., Schreiner, M., Mäder, M., Ebel, M., Svagera, R., and Peev, M. (2001). NIM-BZZZZZZ 181, 698702.Google Scholar
Jerem, E., and Biro, K. T. (2002). “Archaeometry 98,” Proceedings of the 31st Symposium, BAR International Series 1043, London.Google Scholar
Kockelmann, W., Kirfel, A., and Hähnel, E. (2001). J. Archaeological Sci.ZZZZZZ 28, 213222.CrossRefGoogle Scholar
Lang, J. and Middleton, A. (1997). Radiography of Cultural Material (Butterworth–Heinemann, Oxford).Google Scholar
Linke, R., Schreiner, M., and Traum, R. (2003). Experimental Report No. RB14030, ISIS Facility Annual Report.Google Scholar
Longoni, A., Fiorini, C., Leutenegger, P., Sciuti, S., Fronterota, G., Strüder, L., and Lechner, P. (1998). NIM-AZZZZZZ 409, 407409.Google Scholar
Mairinger, F. and Schreiner, M., “New methods of chemical analysis—a tool for the conservator,” Ref. 1, pp. 515.Google Scholar
Mairinger, F. (2003). Strahlenuntersuchung an Kunstwerken (Seemann, Leipzig).Google Scholar
Mantler, M., Schreiner, M., and Schweizer, F. (2000). Industrial Application of X-ray Diffraction (Dekker, New York), Chap. 27.Google Scholar
Mantler, M., Schreiner, M., Weber, F., Ebner, R., and Mairinger, F. (1992). Adv. X-Ray Anal. AXRAAA 35, 987993; axr, AXRAAA 35, 11571163. axr, AXRAAA Google Scholar
Materials Issues in Art and Archaeology III (1992). Edited by P. B. Vandiver, J. R. Druzik, G. S. Wheeler, and I. C. Freestone [Mater. Res. Soc. Symp. Proc. 267].Google Scholar
Schreiner, M., Linke, R., and Jembrih, D. (2000). in Art et Chimie (CNRS Editions, Paris).Google Scholar
Schreiner, M.and Grasserbauer, M. (1985). Fresenius' Z. Anal. Chem. ZACFAU 322, 181193.Google Scholar
Van Grieken, R., Janssens, K., Van’t dack, L., and Meersmann, G. (2002). “Non-destructive testing and microanalysis for the diagnostics and conservation of the cultural and environmental heritage,” Proceedings of Art 2002, Antwerp, 2–6 June.Google Scholar