Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T09:30:13.488Z Has data issue: false hasContentIssue false

X-ray powder diffraction characterization of the elusive tetraphosphine Si(CH2PPh2)4 silane

Published online by Cambridge University Press:  01 March 2012

Norberto Masciocchi
Affiliation:
Dipartimento di Scienze Chimiche e Ambientali, Università dell’Insubria, via Valleggio 11, 22100 Como, Italy
Simona Galli
Affiliation:
Dipartimento di Scienze Chimiche e Ambientali, Università dell’Insubria, via Valleggio 11, 22100 Como, Italy
Mona Bogza
Affiliation:
Department of Organic Chemistry, University of Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Janet Blümel
Affiliation:
Department of Organic Chemistry, University of Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

Abstract

X-ray powder diffraction data for the tetraphosphinic Si(CH2PPh2)4 silane are reported. Its crystal and molecular structures were determined by simulated annealing and full-profile Rietveld refinement methods. Si(CH2PPh2)4 was found to have tetragonal symmetry with P-421c space group. The lattice parameters were determined to be a=17.211(2) Å, c=7.553(1) Å, V=2237.5(5) Å3. The crystal structure was found to contain isolated Si(CH2PPh2)4 molecules. In each Si(CH2PPh2)4 molecule, the central Si atom was fixed at the −4 symmetric position bearing four CH2PPh2 branches. This environment was confirmed by 31P CP/MAS NMR measurements. Thermo-diffractometric measurements in the 20–120 °C range were also used to estimate the linear and volumetric thermal expansion coefficients (∂ ln V/T=1.8×10−4 K−1), typical for very “soft” materials.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogza, M., Oeser, T., and Blümel, J. (2005). “Synthesis, structure, immobilization and solid-state NMR of new dppp- and tripod-type chelate linkers,” J. Organomet. Chem.JORCAI 690, 33833389.CrossRefGoogle Scholar
Bruker AXS (2005). TOPAS-R, Version 3, Bruker AXS, Karlsruhe, Germany.Google Scholar
Claborn, K., Kahr, B., and Kaminsky, W. (2002). “Calculations of optical properties of the tetraphenyl-X family of isomorphous crystals (X=C,Si,Ge,Sn,Pb),” Cryst. Eng. Commun. 4, 252256.CrossRefGoogle Scholar
Daiss, J. O., Barth, K. A., Burschka, C., Hey, P., Ilg, R., Klemm, K., Richter, I., Wagner, S. A., and Tacke, R. (2004). “Synthesis of the multifunctional (chloromethyl)silanes (MeO)2Si(CH2Cl)2, RSi(CH2Cl)3 ((R=2,4,6-trimethoxyphenyl), ClSi(CH2Cl)3, MeOSi(CH2Cl)3, Si(CH2Cl)4 and ClCH2CH2Si(CH2Cl)3,” OrganometallicsORGND7 23, 51935197.CrossRefGoogle Scholar
Frenzel, A., Herbst-Irmer, R., Klingebiel, U., Noltemeyer, M., and Schafer, M. (1995). “Indolylsilanes and pyrrolylsilanes-syntheses and crystal structures,” Z. Naturforsch., B: Chem. Sci.ZNBSEN 50, 16581664.CrossRefGoogle Scholar
Hendricksen, D. H., Oswald, A. A., Ansell, G. B., Leta, S., and Kastrup, R. V. (1989). “Selective rhodium-catalyzed hydroformylation with the tri- and tetraphosphine ligands (CH3)1,0Si(CH2CH2PPh2)3,4. Formation of Rh[Si(CH2CH2PPh2)3](CO) via CH3–Si bond cleavage and structure of this Rh(I)–Si bonded complex,” OrganometallicsORGND7 8, 11531157.CrossRefGoogle Scholar
ICDD (2005). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, PA, 19073–3272.Google Scholar
Ilg, R., Troegel, D., Burschka, C., and Tacke, R. (2006). “Tetrafunctional silanes of the formula type Si(CH2X)4 (X=SAc,SH,OAc,OH,Br,I),” OrganometallicsORGND7 25, 548551.CrossRefGoogle Scholar
Klaboe, P., Klewe, B., Martinsen, K., Nielsen, C. J., Powell, D. L., and Stubbles, D. J. (1986). “The molecular structure, conformations and vibrational spectra of 2,2-di(chloromethyl)-1,3-dichloropropane and 2,2-di(bromomethyl)-1,3-dibromopropane,” J. Mol. Struct.JMOSB4 140, 118.CrossRefGoogle Scholar
Masciocchi, N., Galli, S., and Sironi, A. (2005). “X-ray powder diffraction characterization of polymeric metal diazolates,” Comments Inorg. Chem.COICDZ 26, 137.CrossRefGoogle Scholar
Neugebauer, P., Klingebiel, U., and Noltemeyer, M. (1995). “Silylfurans and bis(silylbutadiynes-synthesis), lithium derivatives, crystal structures,” Z. Naturforsch., B: Chem. Sci.ZNBSEN 55, 913923.CrossRefGoogle Scholar
Perry, R. H., Green, D. W., and Maloney, J. O., Eds. (1998). Perry’s Chemical Engineers’ Handbook (Mc-Graw Hill, New York), 7th ed., Tables 2–147.Google Scholar
Ropartz, L., Haxton, K. J., Foster, D. F., Morris, R. E., Slawin, A. M. Z., and Cole-Hamilton, D. J. (2002). “Phosphine containing dendrimers for highly regioselective rhodium catalysed hydroformylation of alkenes: a positive ‘dendritic effect’,” J. Chem. Soc. Dalton Trans.JCDTBI 2002, 43234334.CrossRefGoogle Scholar
Semmingsen, D. (1988). “Neutron diffraction refinement of the structure of pentaerythrol,” Acta Chem. Scand., Ser. AACAPCT A42, 279283.CrossRefGoogle Scholar
Spek, A. L. (2005). “PLATON, A Multipurpose Crystallographic Tool,” Utrecht University, Utrecht, The Netherlands.Google Scholar