Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T04:13:32.613Z Has data issue: false hasContentIssue false

X-Ray Powder Diffraction Analysis of Barium Titanyl Oxalate Tetrahydrate

Published online by Cambridge University Press:  10 January 2013

D. Louër
Affiliation:
Laboratoire de Cristallochimie (URA 254), Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes cedex, France
A. Boultif
Affiliation:
Laboratoire de Cristallochimie (URA 254), Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes cedex, France
F.J. Gotor
Affiliation:
Instituto Ciencias de Materiales (CSIC), P.B. 1065 Sevilla, Spain
J.M. Criado
Affiliation:
Instituto Ciencias de Materiales (CSIC), P.B. 1065 Sevilla, Spain

Abstract

Barium titanyl oxalate tetrahydrate, Ba(TiO)(C2O4)2.4H2O, has been investigated by means of X-ray powder diffraction. Precise powder diffraction data were obtained by a conventional diffractometer with strictly monochromatic radiation. Unit cell dimensions were determined by an indexing program based on the variation of parameters by successive dichotomies. A monoclinic cell was found, a=14.044(2)Å, b=13.812(2)Å, c=13.382(2)Å, β=91.48(1); V=2594.9Å3, which is characterized by the figures of merit M20=46.5 and F30=107(0.0056, 50). The complete powder pattern was reviewed by means of the program NBS*AIDS83 and the 81 first lines were indexed. Structural imperfections were not detected from the diffraction line widths, which are comparable to the instrumental resolution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. & Louër, D. (1990), in preparation.Google Scholar
Clabaugh, W.S., Swiggard, E.M. & Gilchrist, R. (1956) J. Res. Natl. Bur. Stand. (U.S.), 56, 289291.CrossRefGoogle Scholar
Fang, T.-T. & Lin, H.-B. (1989) J. Am. Ceram. Soc., 72, 18991906.CrossRefGoogle Scholar
Gallagher, P.K. & Schrey, F. (1963) J. Am. Ceram. Soc., 46, 567573.CrossRefGoogle Scholar
Gallagher, P.K. & Thomson, J. (1965) J. Am. Ceram. Soc., 48, 644647.CrossRefGoogle Scholar
Kudaka, K., Iizumi, K. and Sasaki, K. (1982) Am. Ceram. Soc. Bull., 61, 1236.Google Scholar
Louër, D. & Langford, J.I. (1988) J. Appl. Crystallogr., 21, 430437.CrossRefGoogle Scholar
Louër, D. & Louër, M. (1972) J. Appl. Crystallogr., 5, 271275.CrossRefGoogle Scholar
Louër, D. & Vargas, R. (1982) J. Appl. Crystallogr., 15, 542545.CrossRefGoogle Scholar
Mighell, A.D., Hubbard, C.R. & Stalik, J.K., NBS*AIDS80: a FORTRAN Program for Crystallographic Data Evaluation. Nat. Bur. Stand. (U.S.) Tech. Note 1141 (1981). (NBS*AIDS83 is an expanded version of NBS*AIDS80.)Google Scholar
Pfaff, G., Schmidt, F., Ludwig, W. & Feltz, A. (1988) J. Thermal Anal., 33, 771779.CrossRefGoogle Scholar
Yamamura, H., Watanabe, A., Shirasaki, S., Moriyoshi, Y. & Tanada, M. (1985) Ceram. Int., 11, 1722.CrossRefGoogle Scholar