Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T02:10:38.364Z Has data issue: false hasContentIssue false

X-Ray Powder Diffraction Analysis of a Nonlinear Optical Material 4-(N,N-dimethylamino)-3-acetamidonitrobenzene

Published online by Cambridge University Press:  10 January 2013

T. C. Huang
Affiliation:
IBM Almaden Research Center 650 Harry Road, San Jose, California 95120-6099, U.S.A.
R. Karimi
Affiliation:
IBM Almaden Research Center 650 Harry Road, San Jose, California 95120-6099, U.S.A.
J.-C. Baumert
Affiliation:
IBM Almaden Research Center 650 Harry Road, San Jose, California 95120-6099, U.S.A.
G. C. Bjorklund
Affiliation:
IBM Almaden Research Center 650 Harry Road, San Jose, California 95120-6099, U.S.A.

Abstract

A nonlinear optical material 4-(N,N-dimethylamino)-3-acetamidonitrobenzene, (CH3)2NC6H3NO2NHCOCH3, has been characterized by X-ray powder diffractometer method. The experimental 2θ values corrected for systematic errors, the relative intensities, values of dexp and the Miller indices of the 46 peaks observed in the 5° to 51° 2θ range are reported. The powder diffraction data have been evaluated, and the figure of merit is F30 = 36.6 (0.016, 51). The unit cell parameter least-squares refined from 38 non-overlapping peaks of the monoclinic compound with a P21 space group are: a = 4.792(1)Å, b = 13.055(2)Å, c = 8.735(1)Å, β = 94.43(2)°, V = 544.8(1)Å3, Z = 2, and Dx = 1.36 gm/cm3. The powder diffraction results are in a good agreement with those obtained from single-crystal structure data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E. and Evans, H.T. Jr., “Indexing and Least-Squares Refinement of Powder Diffraction Data”, Report PB 216188, U.S. Department of Commerce, National Technical Information Service, 5286 Port Royal Rd., Springfield, VA 22151 (1973).Google Scholar
Baumert, J.-C., Twieg, R. J., Bjorklund, G. C., Logan, J. A., and Dirk, C.W.Appl. Phys. Lett. 51, 1484 (1987).CrossRefGoogle Scholar
Huang, T. C. and Parrish, W.Adv. X-Ray Anal. 27, 45 (1984).Google Scholar
Norman, P. A., Bloor, D. Obhi, J.S., , Karaulov, S. A., Hursthouse, M. B., Kolinsky, P.V., Jones, R. J. and Hall, S. R.J. Opt. Soc. Am. B. 4, 1013 (1987).CrossRefGoogle Scholar
Parrish, W. and Huang, T. C., Adv. X-Ray Anal. 26, 35 (1983).Google Scholar
Parrish, W. and Huang, T.C. in “Proceeding of Symposium on Accuracy in Powder Diffraction”, Block, S. and Hubbard, C. R. (Eds.), pp. 95110, NBS, Washington D.C. (1980).Google Scholar
Smith, D. K.Norelco Reporter XV, 57 (1968);Google Scholar
Borg, I. Y. and Smith, D. K.Calculated X-Ray Powder Patterns for Silicate Minerals”, (Geological Society of America, Boulder, CO, 1969).CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L.J. Appl. Cryst. 12, 60 (1979).CrossRefGoogle Scholar
Twieg, R. J. and Dirk, C. W. IBM Research Report RJ-5329, 1986. “Nonlinear Optical Properties of Organic and Polymeric Materials”, William, D. J., Ed., ACS Symp. Series #233, ACS, Washington D.C., 1983;Google Scholar
Chemla, D. S. and Zyss, J., Eds., “Nonlinear Optical Properties of Organic Molecules and Crystals”, Vols. 1 & 2, Academic Press, Orando, FL., 1986.Google Scholar