Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T23:48:54.040Z Has data issue: false hasContentIssue false

X-ray powder diffraction analysis of a new magnesium chromate hydrate, MgCrO4·11H2O

Published online by Cambridge University Press:  03 April 2012

A. Dominic Fortes*
Affiliation:
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom Centre for Planetary Sciences at UCL/Birkbeck, Gower Street, London WC1E 6BT, United Kingdom
Ian G. Wood
Affiliation:
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom Centre for Planetary Sciences at UCL/Birkbeck, Gower Street, London WC1E 6BT, United Kingdom
*
a)Author to whom correspondence should be addressed. Electronic mail [email protected]

Abstract

A new hydrate of magnesium chromate is synthesized by quenching aqueous solutions of MgCrO4 in liquid nitrogen. MgCrO4·11H2O is isostructural with the rare mineral meridianiite (MgSO4·11H2O) being triclinic, , Z = 2, with unit-cell parameters a = 6.811 33(8) Å, b = 6.958 39(9) Å, c = 17.3850(2) Å, α = 87.920(1)°, β = 89.480(1)°, γ = 62.772(1)°, and V = 732.17(1) Å3 at −15 °C. The difference in unit-cell parameters between SO4- and CrO4-bearing species is only partially accounted for by the difference in S–O and Cr–O bond lengths; the remainder of the difference (over 90% in the cell volume) is attributed to weakening of the interpolyhedral hydrogen-bond network.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bars, P. O., Le Marouille, J. Y., and Grandjean, D. (1977). “Etude de chromates, molybdates et tungstates hydratés. I. Etude structural de MgMoO4·5H2O,” Acta Crystallogr., Sect. B 33, 11551157.CrossRefGoogle Scholar
Baur, W. and Rolin, J. L. (1972). “Salt hydrates. IX. The comparison of the crystal structure of magnesium sulfate pentahydrate with copper sulfate pentahydrate and magnesium chromate pentahydrate,” Acta Crystallogr., Sect. B 28, 14481455.CrossRefGoogle Scholar
Bertrand, G., Dusausoy, Y., Protas, J., and Watelle-Marion, G. (1971). “Détermination de la structure du chromate de magnésium pentahydraté. Influence du facteur structural sur une déshydratation,” C. R. Hebd. Acad. Sci. C 272, 530534.Google Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Cryst. 37, 724731.CrossRefGoogle Scholar
Cooper, M. J. (1963). “Dispersion corrections for X-ray scattering of atoms for Ag and Co radiations,” Acta Crystallogr., 16, 10671069.CrossRefGoogle Scholar
Cotton, F. A., Wilkinson, G., Marillo, C. A., and Bochman, M. (1999). Advanced Inorganic Chemistry (John Wiley & Sons, New York), 6th ed.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Cryst. 5, 108113.CrossRefGoogle Scholar
Fock, A. L. (1880). “Ueber die aenderung der brechsungsexponenten isomorpher mischungen mit deren chemischer zusammensetzung,” Z. Krist. 4, 583608.Google Scholar
Fortes, A. D., Browning, F., and Wood, I. G. (2012a) “Cation substitution in synthetic meridianiite (MgSO4·11H2O) I: X-ray powder diffraction analysis of quenched polycrystalline aggregates,” Phys. Chem. Min. (In press).Google Scholar
Fortes, A. D., Browning, F., and Wood, I. G. (2012b) “Cation substitution in synthetic meridianiite (MgSO4·11H2O) II: Variation in unit-cell parameters determined from X-ray powder diffraction data,” Phys. Chem. Min. (In press).Google Scholar
Fortes, A. D., Wood, I. G., and Knight, K. S. (2008). “The crystal structure and thermal expansion tensor of MgSO4·11D2O (meridianiite) determined by neutron powder diffraction,” Phys. Chem. Min. 35, 207221.CrossRefGoogle Scholar
Fritzsche, C. J. (1837). “Ueber eine neue verbindung der schwefelsauren talkerde mit wasser,” Ann. Phys. Chem. 42, 577580.CrossRefGoogle Scholar
Hill, A. E., Soth, G. C., and Ricci, J. E. (1940). “The systems magnesium chromate-water and ammonium chromate-water from 0 to 75°,” J. Am. Chem. Soc. 62, 21312134.CrossRefGoogle Scholar
Hinteregger, E., Pribil, A. B., Hofer, T. S., Randolf, B. R., Weiss, A. K. H., and Rode, B. M. (2010). “Structure and dynamics of the chromate ion in aqueous solution. An ab initio QMCF-MD simulation,” Inorg. Chem. 49, 79647968.CrossRefGoogle ScholarPubMed
Kolitsch, U. (2002). “Magnesium selenate hexahydrate, MgSeO4·6H2O,” Acta Crystallogr., Sect. E 58, i3i5.CrossRefGoogle Scholar
Kopp, H. (1842). “Notiz über einige chromsaure salze,” Liebig's Ann. Chem. 42, 97103.CrossRefGoogle Scholar
Larson, A. C., and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report, LAUR 86-748). Los Alamos National Laboratory, Los Alamos, New Mexico.Google Scholar
Meyer, J., and Aulich, W. (1928). “Zur kenntnis der doppelsalze der selensäure,” Z. Anorg. Allg. Chem. 172, 321343.CrossRefGoogle Scholar
Peterson, R. C. and Wang, R. (2006). “Crystal molds on Mars: melting of a possible new mineral species to create Martian chaotic terrain,” Geology 34, 957960.CrossRefGoogle Scholar
Peterson, R. C., Nelson, W., Madu, B., Shurvell, H. F. (2007). “Meridianiite: a new mineral species observed on Earth and predicted to exist on Mars,” Am. Min. 92, 17561759.CrossRefGoogle Scholar
Röttger, K., Endriss, A., Ihringer, J., Doyle, S., and Kuhs, W. F. (1994). “Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K,” Acta Crystallogr., Sect. B 50, 644648.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “F N: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst. 12, 6065.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34, 210213.CrossRefGoogle Scholar
Toby, B. H. (2003). “CIF applications. XII. Inspecting Rietveld fits from pdCIF: pdCIFplot,” J. Appl. Cryst. 36, 12851287.CrossRefGoogle Scholar
Westenbrink, H. G. K. (1926). “The space-groups of the rhombic and monoclinic heptahydrates of the sulphates of the bivalent metals,” Proc. Sect. Sci. K. Akad. Weten. Amsterdam 29, 1223–1232.Google Scholar
Wood, I. G., Hughes, N., Browning, F., and Fortes, A. D. (2012). “A compact transportable, thermoelectrically-cooled cold stage for reflection geometry X-ray powder diffraction,” J. Appl. Cryst. (In press).CrossRefGoogle Scholar
Wyrouboff, G. (1890). “Sur la forms crystalline de quelques sels,” Bull. Soc. Français Min. 12, 6976.Google Scholar
Supplementary material: File

Dominic-Fortes supplementary material

Dominic-Fortes supplementary material

Download Dominic-Fortes supplementary material(File)
File 330.7 KB