Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T16:08:31.409Z Has data issue: false hasContentIssue false

Utilizing organic and organometallic structural data in powder diffraction

Published online by Cambridge University Press:  21 October 2014

Jason C. Cole*
Affiliation:
School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
Elena A. Kabova
Affiliation:
School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
Kenneth Shankland
Affiliation:
School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The Cambridge Structural Database (CSD) is a database of small molecule organic and organometallic crystal structures elucidated using X-Ray and neutron crystallography. The CSD is distributed alongside a system of software (the Cambridge Structural Database System) to academic and industrial users. The system contains a number of applications (in particular DASH, ConQuest, and Mogul) that can be used to aid crystallographers in the solution and refinement of crystal structures from powder diffraction data, and in the interpretation of crystal structure models (in particular, Mercury). This publication uses a racemic form of ornidazole (Z′ = 3) to illustrate the efficacy of DASH in the crystal structure solution from powder diffraction data. Furthermore, numerous features in Mogul and Mercury that aid crystal structure solution and interpretation of crystallographic data are revised. Finally, a review of a new method for using database-derived geometric information directly in structural solution is presented.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R., and Towler, M. (2004). “CIF applications. XV. enCIFer: a program for viewing, editing and visualizing CIFs,” J. Appl. Crystallogr. 37, 335338.Google Scholar
Allen, F. H., Wood, P. A., and Galek, P. T. A. (2013). “Role of chloroform and dichloromethane solvent molecules in crystal packing: an interaction propensity study,” Acta Crystallogr. B-Struct. Sci. 69, 379388.Google Scholar
Bekoe, S. L., Urmann, D., Lakatos, A., Glaubitz, C., and Schmidt, M. U. (2012). “Nimustine hydrochloride: the first crystal structure determination of a 2-chloroethyl-N-nitrosourea hydrochloride derivative by X-ray powder diffraction and solid-state NMR,” Acta Crystallogr. C – Crystal Struct. Commun. 68, O144O148.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding – functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. 34, 15551573.CrossRefGoogle Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., and Watkin, D. J. (2003). “CRYSTALS version 12: software for guided crystal structure analysis,” J. Appl. Crystallogr. 36, 14871487.CrossRefGoogle Scholar
Bruening, J., Alig, E., van de Streek, J., and Schmidt, M. U. (2011). “The use of dispersion-corrected DFT calculations to prevent an incorrect structure determination from powder data: the case of acetolone, C11H11N3O3,” Z. Kristallogr. 226, 476482.CrossRefGoogle Scholar
Bruno, I. J., Cole, J. C., Lommerse, J. P. M., Rowland, R. S., Taylor, R., and Verdonk, M. L. (1997). “IsoStar: A library of information about nonbonded interactions,” J. Comput. Aided Mol. Des. 11, 525537.CrossRefGoogle ScholarPubMed
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J., and Taylor, R. (2002). “New software for searching the Cambridge Structural Database and visualizing crystal structures,” Acta Crystallogr. B-Struct. Sci. 58, 389397.CrossRefGoogle ScholarPubMed
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.Google Scholar
Coelho, A. (2003). Topas user manual. Version v3.1. Bruker AXS GmbH, Karlsruhe, Germany.Google Scholar
David, W. I. F., Shankland, K., and Shankland, N. (1998). “Routine determination of molecular crystal structures from powder diffraction data,” Chem. Commun., 931–932.Google Scholar
David, W. I. F., Shankland, K., Cole, J. C., Maginn, S., Motherwell, W. D. S., and Taylor, R. (2006a). DASH User Manual Guide (Cambridge Crystallographic Data Centre, Cambridge, UK).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006b). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.Google Scholar
Deng, L., Wang, W., and Lv, J. (2007). “Ornidazole hemihydrate,” Acta Crystallogr. E-Struct. Rep. Online 63, O4204–U2347.Google Scholar
Desiraju, G. R. (1995). “Supramolecular synthons in crystal engineering – a new organic-synthesis,” Angew. Chemie, Int. Ed. Engl. 34, 23112327.CrossRefGoogle Scholar
Fernandes, P., Florence, A. J., Shankland, K., Shankland, N., and Johnston, A. (2006). “Powder study of chlorothiazide N,N-dimethyl-formamide solvate,” Acta Crystallogr. E, Struct. Rep. Online 62, O2216O2218.Google Scholar
Fernandes, P., Shankland, K., Florence, A. J., Shankland, N., and Johnston, A. (2007). “Solving molecular crystal structures from X-ray powder diffraction data: the challenges posed by gamma-carbamazepine and chlorothiazide N,N,-dimethylformamide (1/2) solvate,” J. Pharm. Sci. 96, 11921202.Google Scholar
Ferreira, F. F., Antoni, S. G., Pires Rosa, P. C., and Paiva-Santos, C. D. O. (2010). “Crystal structure determination of mebendazole form a using high-resolution synchrotron X-Ray powder diffraction data,” J. Pharm. Sci. 99, 17341744.CrossRefGoogle Scholar
Florence, A. J., Shankland, N., Shankland, K., David, W. I. F., Pidcock, E., Xu, X. L., Johnston, A., Kennedy, A. R., Cox, P. J., Evans, J. S. O., Steele, G., Cosgrove, S. D., and Frampton, C. S. (2005). “Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH: the state of the art and challenges,” J. Appl. Crystallogr. 38, 249259.CrossRefGoogle Scholar
Fujii, K., Uekusa, H., Itoda, N., Yonemochi, E., and Terada, K. (2012). “Mechanism of dehydration-hydration processes of lisinopril dihydrate investigated by ab Initio powder X-ray diffraction analysis,” Crystal Growth Des. 12, 61656172.Google Scholar
Gavezzotti, A. (1994). “Are crystal structures predictable?,” Acc. Chem. Res. 27, 309314.Google Scholar
Gavezzotti, A. and Filippini, G. (1994). “Geometry of the intermolecular X-H…Y (X, Y = N, O) hydrogen-bond and the calibration of empirical hydrogen-bond potentials,” J. Phys. Chem. 98, 48314837.Google Scholar
Guguta, C., van Eck, E. R. H., and de Gelder, R. (2009). “Structural insight into the dehydration and hydration behavior of naltrexone and naloxone hydrochloride. Dehydration-induced expansion versus contraction,” Crystal Growth Des. 9, 33843395.CrossRefGoogle Scholar
IUCr (2014). checkCIF – a service of the International Union of Crystallography.Google Scholar
Johnston, A., Florence, A. J., Shankland, K., Markvardsen, A., Shankland, N., Steele, G., and Cosgrove, S. D. (2004). “Powder study of N- 2-(4-hydroxy-2-oxo-2,3-dihydro-1,3-benzothiazol-7-yl)ethyl-3- 2-(2-n aphthalen-1-ylethoxy)ethylsulfonyl propylaminium benzoate,” Acta Crystallogr. E, Struct. Rep. Online 60, O1751O1753.Google Scholar
Kaduk, J. A. (2007). “Chemical reasonableness in Rietveld analysis; organics,” Powder Diffr. 22, 7482.Google Scholar
Karki, S., Fabian, L., Friscic, T., and Jones, W. (2007). “Powder x-ray diffraction as an emerging method to structurally characterize organic solids,” Org. Lett. 9, 31333136.Google Scholar
Lapidus, S. H., Stephens, P. W., Arora, K. K., Shattock, T. R., and Zaworotko, M. J. (2010). “A comparison of cocrystal structure solutions from powder and single crystal techniques,” Crystal Growth Des. 10, 46304637.CrossRefGoogle Scholar
Lemmerer, A., Adsmond, D. A. and Bernstein, J. (2011). “An investigation of the hydrogen-bond preferences and co-crystallization behavior of three didonor compounds,” Crystal Growth Des. 11, 20112019.CrossRefGoogle Scholar
Majumder, M., Buckton, G., Rawlinson-Malone, C., Williams, A. C., Spillman, M. J., Shankland, N., and Shankland, K. (2011). “A carbamazepine-indomethacin (1:1) cocrystal produced by milling,” Crystengcomm 13, 63276328.Google Scholar
Motherwell, W. D. S., Shields, G. P., and Allen, F. H. (2000). “Automated assignment of graph-set descriptors for crystallographically symmetric molecules,” Acta Crystallogr. B, Struct. Sci. 56, 466473.Google Scholar
Rigaku (2013). Integrated X-ray Powder Diffraction Software PDXL 2.2: Structure Analysis User Manual, Rigaku, Distributed with the Rigaku PDXL software (v2.2).Google Scholar
Shankland, K., David, W. I. F., McCusker, L. B., and Baerlocher, C. (eds) (2002a). Structure Determination from Powder Diffraction Data (Oxford University Press, USA).Google Scholar
Shankland, K., McBride, L., David, W. I. F., Shankland, N., and Steele, G. (2002b). “Molecular, crystallographic and algorithmic factors in structure determination from powder diffraction data by simulated annealing,” J. Appl. Crystallogr. 35, 443454.Google Scholar
Shankland, K., Spillman, M. J., Kabova, E. A., Edgeley, D. S., and Shankland, N. (2013). “The principles underlying the use of powder diffraction data in solving pharmaceutical crystal structures,” Acta Crystallogr. C, Crystal Struct. Commun. 69, 12511259.Google Scholar
Shin, H. S., Song, H., Kim, E., and Chung, K. B. (1995). “The crystal and molecular-structure of 1-(3-chloro-2-hydroxypropyl)-2-methyl-5-nitroimidazole (ornidazole),” Bull. Korean Chem. Soc. 16, 912915.Google Scholar
Skorepova, E., Cejka, J., Husak, M., Eigner, V., Rohlicek, J., Sturc, A., and Kratochvil, B. (2013). “Trospium chloride: unusual example of polymorphism based on structure disorder,” Crystal Growth Des. 13, 51935203.Google Scholar
Skupin, R., Cooper, T. G., Frohlich, R., Prigge, J., and Haufe, G. (1997). “Lipase-catalyzed resolution of both enantiomers of omidazole and some analogues,” Tetrahedron-Asymmetry 8, 24532464.Google Scholar
Smart, O. S., Womack, T. S., Sharff, A., Flensburg, C., Keller, P., Paciorek, W., Vonrhein, C., and Bricogne, G. (2001). Grade (Global Phasing Ltd., Cambridge, UK). http://www.globalphasing.com Google Scholar
Snegaroff, K., Tan Tai, N., Marquise, N., Halauko, Y. S., Harford, P. J., Roisnel, T., Matulis, V. E., Ivashkevich, O. A., Chevallier, F., Wheatley, A. E. H., Gros, P. C., and Mongin, F. (2011). “Deprotonative metalation of chloro- and bromopyridines using amido-based bimetallic species and regioselectivity-computed CH acidity relationships,” Chem. Eur. J. 17, 1328413297.CrossRefGoogle ScholarPubMed
Spek, A. L. (2009). “Structure validation in chemical crystallography,” Acta Crystallogr. D, Biol. Crystallogr. 65, 148155.CrossRefGoogle ScholarPubMed
Stewart, J. J. P. (2012). MOPAC2012, Stewart Computational Chemistry (Colorado Springs, CO, USA).Google Scholar
Vella-Zarb, L., Dinnebier, R. E., and Baisch, U. (2013). “The devil is in the detail: a rare H-Bonding Motif in new forms of Docetaxel,” Crystal Growth and Des. 13, 44024410.Google Scholar
Wood, P. A., Olsson, T. S. G., Cole, J. C., Cottrell, S. J., Feeder, N., Galek, P. T. A., Groom, C. R., and Pidcock, E. (2013). “Evaluation of molecular crystal structures using Full Interaction Maps,” Cryst. Eng. Comm. 15, 6572.CrossRefGoogle Scholar
Supplementary material: File

Cole Supplementary Material

Supplementary Material 1

Download Cole Supplementary Material(File)
File 15.5 KB
Supplementary material: Image

Cole Supplementary Material

Supplementary Material 2

Download Cole Supplementary Material(Image)
Image 162.5 KB
Supplementary material: Image

Cole Supplementary Material

Supplementary Material 3

Download Cole Supplementary Material(Image)
Image 225.3 KB
Supplementary material: File

Cole Supplementary Material

Supplementary Material 4

Download Cole Supplementary Material(File)
File 420.8 KB
Supplementary material: File

Cole Supplementary Material

Supplementary Material 5

Download Cole Supplementary Material(File)
File 1.4 KB