Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T16:02:43.608Z Has data issue: false hasContentIssue false

Use of a Be-dome holder for texture and strain characterization of Li metal thin films via sin2(ψ) methodology

Published online by Cambridge University Press:  04 June 2020

Mark A. Rodriguez*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico87185-1411, USA
Katharine L. Harrison
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico87185-1411, USA
Subrahmanyam Goriparti
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico87185-1411, USA
James J. M. Griego
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico87185-1411, USA
Brad L. Boyce
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico87185-1411, USA
Brian R. Perdue
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico87185-1411, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Residual strain in electrodeposited Li films may affect safety and performance in Li metal battery anodes, so it is important to understand how to detect residual strain in electrodeposited Li and the conditions under which it arises. To explore this Li films, electrodeposited onto Cu metal substrates, were prepared under an applied pressure of either 10 or 1000 kPa and subsequently tested for the presence or absence of residual strain via sin2(ψ) analysis. X-ray diffraction (XRD) analysis of Li films required preparation and examination within an inert environment; hence, a Be-dome sample holder was employed during XRD characterization. Results show that the Li film grown under 1000 kPa displayed a detectable presence of in-plane compressive strain (−0.066%), whereas the Li film grown under 10 kPa displayed no detectable in-plane strain. The underlying Cu substrate revealed an in-plane residual strain near zero. Texture analysis via pole figure determination was also performed for both Li and Cu and revealed a mild fiber texture for Li metal and a strong bi-axial texture of the Cu substrate. Experimental details concerning sample preparation, alignment, and analysis of the particularly air-sensitive Li films have also been detailed. This work shows that Li metal exhibits residual strain when electrodeposited under compressive stress and that XRD can be used to quantify that strain.

Type
Proceedings Paper
Copyright
Copyright © National Technology & Engineering Solutions of Sandia, LLC, 2020. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, C., Lee, Y. M., Cho, K. Y., Lee, Y.-G., Lee, B., Phatek, C., and Hong, S. (2018). “Effect of nanopatterning on mechanical properties of Lithium anode,” Sci. Rep. 8, 2514.CrossRefGoogle ScholarPubMed
Cho, J. H., Xiao, X., Guo, K., Liu, Y., Gao, H., and Sheldon, B. W. (2020). “Stress evolution in lithium metal electrodes,” Energy Storage Mater. 24, 281290.CrossRefGoogle Scholar
Cullity, B. D. (1978). Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA), 2nd ed., p. 75.Google Scholar
Gates-Rector, S. and Blanton, T. (2019). “The powder diffraction file: a quality materials characterization database,” Powd. Diffr. 34(2), 352360.CrossRefGoogle Scholar
Harrison, K. L., Zavadil, K. R., Hahn, N. T., Meng, X., Elam, J. W., Leenheer, A., Zhang, J-G., and Jungjohann, K. L. (2017). “Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy,” ACS Nano 11, 1119411205.CrossRefGoogle Scholar
Herbert, E. G., Hackney, S. A., Thole, V., Dudney, N. J., and Phani, P. S. (2018a). “Nanoindentation of high-purity vapor deposited lithium films: a mechanistic rationalization of diffusion-mediated flow,” J. Mater. Res. 33(10), 13471360.CrossRefGoogle Scholar
Herbert, E. G., Hackney, S. A., Thole, V., Dudney, N. J., and Phani, P. S. (2018b). “Nanoindentation of high-purity vapor deposited lithium films: a mechanistic rationalization of the transition from diffusion to dislocation-mediated flow,” J. Mater. Res. 33(10), 13611368.CrossRefGoogle Scholar
Kushima, A., So, K. P., Su, C., Bai, P., Kuriyama, N., Maebashi, T., Fujiwara, Y., Bazant, M. Z., and Li, J. (2017). “Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams,” Nano Energy 32, 271279.CrossRefGoogle Scholar
LePage, W. S., Chen, Y., Kazyak, E., Chen, K. H., Sanchez, A. J., Poli, A., Arruda, E. M., Thouless, M. D., and Dasgupta, N. P. (2019). “Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries,” J. Electrochem. Soc. 166(2), A89A97.CrossRefGoogle Scholar
Lu, J., Chen, Z., Pan, F., Cui, Y., and Amine, K. (2018). “High-performance anode materials for rechargeable lithium-ion batteries,” Electrochem. Energy Rev. 1(1), 3553.CrossRefGoogle Scholar
Noyan, I. C., Huang, T. C., and York, B. R. (1995). “Residual stress/strain analysis in thin films by X-ray diffraction,” Crit. Rev. Solid State Mater. Sci. 20, 125177.CrossRefGoogle Scholar
Qian, J., Henderson, W. A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., and Zhang, J. G. (2015). “High rate and stable cycling of lithium metal anode,” Nat. Comm. 6, 6362.CrossRefGoogle ScholarPubMed
Rodriguez, M. A., Boyle, T. J., Yang, P., and Harris, D. L. (2008). “A beryllium dome specimen holder for XRD analysis of air sensitive materials,” Powd. Diffr. 23, 121124.Google Scholar
Rodriguez, M. A., Pearl, M. R., Van Benthem, M. H., Griego, J. J. M., and Pillars, J. R. (2013). “Tilt-A-Whirl: a texture analysis package for 3D rendering of pole figures using Matlab,” Powd. Diffr. 28, 8189.CrossRefGoogle Scholar
Schultz, R. P. (2002). Lithium: Measurement of Young's Modulus and Yield Strength (Fermi National Accelerator Lab., Batavia, IL, USA).CrossRefGoogle Scholar
Tariq, S., Ammigan, K., Hurh, P., Schultz, R., Liu, P., and Shang, J. (2003). “Li material testing – Fermilab antiproton source lithium collection lens,” in Proceedings of the 2003 Particle Accelerator Conference, Vol. 3 (IEEE, New York, NY), pp. 1452–1454.Google Scholar
Voyiadjis, G. Z. and Yaghoobi, M. (2017). “Review of nanoindentation size effect: experiments and atomistic simulation,” Crystals 7(10), 321.CrossRefGoogle Scholar
Wang, X., Zeng, W., Hong, L., Xu, W., Yang, H., Wang, F., Duan, H., Tang, M., and Jiang, H. (2018). “Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates,” Nat. Energy 3(3), 227.CrossRefGoogle Scholar
Wu, F., Yuan, Y. X., Cheng, X. B., Bai, Y., Li, Y., Wu, C., and Zhang, Q. (2018). “Perspectives for restraining harsh lithium dendrite growth: towards robust lithium metal anodes,” Energy Storage Mater. 15, 148170.CrossRefGoogle Scholar
Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V., and Greer, J. R. (2017). “Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes,” Proc. Natl. Acad. Sci. 114(1), 5761.CrossRefGoogle Scholar
Yoon, I., Jurng, S., Abraham, D. P., Lucht, B. L., and Guduru, P. R. (2018). “In situ measurement of the plane-strain modulus of the solid electrolyte interphase on lithium-metal anodes in ionic liquid electrolytes,” Nano Lett. 18(9), 57525759.CrossRefGoogle ScholarPubMed
Zhang, X., Wang, Q. J., Harrison, K. L., Jungjohann, K., Boyce, B. L., Roberts, S. A., Attia, P. M., and Harris, S. J. (2019). “Rethinking how external pressure can suppress dendrites in lithium metal batteries,” J. Electrochem. Soc. 166(15), A3639A3652.CrossRefGoogle Scholar
Zhang, X., Wang, Q. J., Harrison, K. L., Roberts, S. A., and Harris, S. J. (2020). “Pressure-driven interface evolution in solid state lithium metal batteries,” Cell Rep. Phys. Sci. 1, 100012.CrossRefGoogle Scholar