Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T05:46:23.290Z Has data issue: false hasContentIssue false

Ultratrace speciation of nitrogen compounds in aerosols collected on silicon wafer surfaces by means of TXRF-NEXAFS

Published online by Cambridge University Press:  06 March 2012

S. Török
Affiliation:
KFKI Atomic Energy Research Institute, Budapest, Hungary
J. Osán*
Affiliation:
KFKI Atomic Energy Research Institute, Budapest, Hungary
B. Beckhoff
Affiliation:
Physikalisch-Technische Bundesanstalt, Berlin, Germany
G. Ulm
Affiliation:
Physikalisch-Technische Bundesanstalt, Berlin, Germany
*
a)Author to whom correspondence should be addressed; Electronic mail: [email protected]

Abstract

Total reflection X-ray fluorescence analysis (TXRF) using monochromatized undulator radiation in the PTB radiometry laboratory at the synchrotron radiation facility BESSY II has been employed to investigate the chemical state of nitrogen compounds in aerosols. The aerosol samples of different size fractions were deposited on silicon wafer surfaces in a May impactor. Using a thin window Si(Li) detector, TXRF detection limits for nitrogen are in the upper fg and lower pg range. Taking advantage of the tunability of monochromatized undulator radiation, the near edge X-ray absorption fine structure (NEXAFS) could be combined with TXRF analysis, allowing for the speciation of the aerosols at the nitrogen K absorption edge. Such low detection limits enable an analysis of aerosol samples taken in 10 min with acceptable accuracy. Applicability of the technique to real aerosol samples has been used to compare nitrogen oxidation state in suburban and rural aerosols

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumbach, G. (1996). Air Quality Control (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Beckhoff, B., Fliegauf, R., Ulm, G., Pepponi, G., Streli, C., Wobrauschek, P., Fabry, L., and Pahlke, S. (2001). Spectrochim. Acta, Part B SAASBH 56, 20732083. stb, SAASBH CrossRefGoogle Scholar
Beckhoff, B., Klein, R., Krumrey, M., Scholze, F., Thornagel, R., and Ulm, G. (2000). Nucl. Instrum. Methods Phys. Res. A NIMAER 444, 480483. nia, NIMAER CrossRefGoogle Scholar
Comin, F., Navizet, M., Mangiagalli, P., and Apostolo, G. (1999). Nucl. Instrum. Methods Phys. Res. B NIMBEU 150, 538542. nib, NIMBEU CrossRefGoogle Scholar
Harrison, R. M. and Van Grieken, R. E. (1998). Atmospheric Particles (Wiley, New York), p. 120.Google Scholar
Hennig, C., Hallmeier, K. H., and Szargan, R. (1998). Synthetic Metals,ZZZZZZ 92, 161166.CrossRefGoogle Scholar
Krumrey, M.and Ulm, C. (2001). Nucl. Instrum. Methods Phys. Res. A NIMAER 467–468, 11751178. nia, NIMAER CrossRefGoogle Scholar
Laskin, A., Iedema, M. J., and Cowin, J. P. (2003). Aerosol Sci. Technol. ASTYDQ 37, 246260. ars, ASTYDQ CrossRefGoogle Scholar
Masuda, K., Ishimoto, H., and Takashima, T. (2003). Int. J. Remote Sens. IJSEDK 23, 38353851. irt, IJSEDK CrossRefGoogle Scholar
May, K. R. (1975). J. Aerosol Sci. JALSB7 6, 413416. jav, JALSB7 CrossRefGoogle Scholar
Mészáros, E., Barcza, T., Gelencsér, A., Hlavay, J., Kiss, Gy., Krivácsy, Z., Molnár, A., and Polyák, K. (1997). J. Aerosol Sci. JALSB7 28, 11631175. jav, JALSB7 CrossRefGoogle Scholar
Pianetta, P., Takaura, N., Brennan, S., Tompkins, W., Laderman, S. S., Fischer-Colbrie, A., Shimazaki, A., Miyazaki, K., Madden, M., Wherry, D. C., and Kortright, J. B. (1995). Rev. Sci. Instrum. RSINAK 66, 12931297. rsi, RSINAK CrossRefGoogle Scholar
Preobrajenski, A. B., Vinogradov, A. S., Molodtsov, S. L., Krasnikov, S. K., Chassé, T., Szargan, R., and Laubschat, C. (2002). Phys. Rev. B PRBMDO 65, 205116. prb, PRBMDO CrossRefGoogle Scholar
Ro, C.-U., Oh, K.-Y., Kim, H. K., Kim, Y. P., Lee, C. B., Kim, K. H., Kang, C. H., Osán, J., de Hoog, J., Worobiec, A., and Van Grieken, R. (2001). Environ. Sci. Technol. ESTHAG 35, 44874494. est, ESTHAG CrossRefGoogle Scholar
Ro, C.-U., Osán, J., and Van Grieken, R. (1999). Anal. Chem. ANCHAM 71, 15211528. anc, ANCHAM CrossRefGoogle Scholar
Senf, F., Flechsig, U., Eggenstein, F., Gudat, W., Klein, R., Rabus, H., and Ulm, G. (1998). J. Synchrotron Radiat. JSYRES 5, 780782. jsy, JSYRES CrossRefGoogle Scholar
Streli, C., Wobrauschek, P., Beckhoff, B., Ulm, G., Fabry, L., and Pahlke, S. (2001). X-Ray Spectrom. XRSPAX 30, 2431. xrs, XRSPAX CrossRefGoogle Scholar
Streli, C., Wobraschek, P., Kregsamer, P., Pepponi, G., Pianetta, P., Pahlke, S., and Fabry, L. (2001). Spectrochim. Acta, Part B SAASBH 56, 20852094. stb, SAASBH CrossRefGoogle Scholar
Vairavamurthy, A.and Wang, S. (2002). Environ. Sci. Technol. ESTHAG 36, 30503056. est, ESTHAG CrossRefGoogle Scholar
Vekemans, B., Janssens, K., Vincze, L., Adams, F., and Van Espen, P. (1994). X-Ray Spectrom. XRSPAX 23, 278285. xrs, XRSPAX CrossRefGoogle Scholar
Worobiec, A., de Hoog, J., Osán, J., Szalóki, I., Ro, C.-U., and Van Grieken, R. (2003). Spectrochim. Acta, Part B SAASBH 58, 479496. stb, SAASBH CrossRefGoogle Scholar