Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T13:41:28.177Z Has data issue: false hasContentIssue false

Trace phase detection and strain characterization from serial X-ray free-electron laser crystallography of a Pr0.5Ca0.5MnO3 powder

Published online by Cambridge University Press:  17 November 2014

Kenneth R. Beyerlein*
Affiliation:
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
Christian Jooss
Affiliation:
Institute of Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37085 Göttingen, Germany
Anton Barty
Affiliation:
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
Richard Bean
Affiliation:
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
Sébastien Boutet
Affiliation:
Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025
Sarnjeet S. Dhesi
Affiliation:
Diamond Light Source, OX11 0DE Oxfordshire, United Kingdom
R. Bruce Doak
Affiliation:
Department of Physics, Arizona State University, Tempe, Arizona 85287-1504
Michael Först
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
Lorenzo Galli
Affiliation:
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany Department of Physics, University of Hamburg, Jungiusstr. 6, 20355 Hamburg, Germany
Richard A. Kirian
Affiliation:
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
Joseph Kozak
Affiliation:
Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261
Michael Lang
Affiliation:
Institute of Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37085 Göttingen, Germany
Roman Mankowsky
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
Marc Messerschmidt
Affiliation:
Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025
John C. H. Spence
Affiliation:
Department of Physics, Arizona State University, Tempe, Arizona 85287-1504
Dingjie Wang
Affiliation:
Department of Physics, Arizona State University, Tempe, Arizona 85287-1504
Uwe Weierstall
Affiliation:
Department of Physics, Arizona State University, Tempe, Arizona 85287-1504
Thomas A. White
Affiliation:
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
Garth J. Williams
Affiliation:
Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025
Oleksandr Yefanov
Affiliation:
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
Nadia A. Zatsepin
Affiliation:
Department of Physics, Arizona State University, Tempe, Arizona 85287-1504
Andrea Cavalleri
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany Department of Physics, University of Hamburg, Jungiusstr. 6, 20355 Hamburg, Germany
Henry N. Chapman
Affiliation:
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany Department of Physics, University of Hamburg, Jungiusstr. 6, 20355 Hamburg, Germany Centre for Ultrafast Imaging, Luruper Chaussee 149, 22607 Hamburg, Germany
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

We report on the analysis of virtual powder-diffraction patterns from serial femtosecond crystallography (SFX) data collected at an X-ray free-electron laser. Different approaches to binning and normalizing these patterns are discussed with respect to the microstructural characteristics which each highlights. Analysis of SFX data from a powder of Pr0.5Ca0.5MnO3 in this way finds evidence of other trace phases in its microstructure which was not detectable in a standard powder-diffraction measurement. Furthermore, a comparison between two virtual powder pattern integration strategies is shown to yield different diffraction peak broadening, indicating sensitivity to different types of microstrain. This paper is a first step in developing new data analysis methods for microstructure characterization from serial crystallography data.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., Andreasson, J., Arnlund, D., Bajt, S., Barends, T. R. M., Barthelmess, M., Bogan, M. J., Bostedt, C., Bottin, H., Bozek, J. D., Caleman, C., Coppola, N., Davidsson, J., DePonte, D. P., Elser, V., Epp, S. W., Erk, B., Fleckenstein, H., Foucar, L., Frank, M., Fromme, R., Graafsma, H., Grotjohann, I., Gumprecht, L., Hajdu, J., Hampton, C. Y., Hartmann, A., Hartmann, R., Hau-Riege, S., Hauser, G., Hirsemann, H., Holl, P., Holton, J. M., Homke, A., Johansson, L., Kimmel, N., Kassemeyer, S., Krasniqi, F., Kuhnel, K. U., Liang, M., Lomb, L., Malmerberg, E., Marchesini, S., Martin, A. V., Maia, F. R. N. C., Messerschmidt, M., Nass, K., Reich, C., Neutze, R., Rolles, D., Rudek, B., Rudenko, A., Schlichting, I., Schmidt, C., Schmidt, K. E., Schulz, J., Seibert, M. M., Shoeman, R. L., Sierra, R., Soltau, H., Starodub, D., Stellato, F., Stern, S., Suder, L., Timneanu, N., Ullrich, J., Wang, X., Williams, G. J., Weidenspointner, G., Weierstall, U., Wunderer, C., Barty, A., Spence, J. C. H., and Chapman, H. N. (2012). “Time-resolved protein nanocrystallography using an X-ray free-electron laser,” Opt. Express 20(3), 27062716.Google Scholar
Arnlund, D., Johansson, L. C., Wickstrand, C., Barty, A., Williams, G. J., Malmerberg, E., Davidsson, J., Milathianaki, D., DePonte, D. P., Shoeman, R. L., Wang, D., James, D., Katona, G., Westenhoff, S., White, T. A., Aquila, A., Bari, S., Berntsen, P., Bogan, M., van Driel, T. B., Doak, R. B., Kjær, K. S., Frank, M., Fromme, R., Grotjohann, I., Henning, R., Hunter, M. S., Kirian, R. A., Kosheleva, I., Kupitz, C., Liang, M., Martin, A. V., Nielsen, M. M., Messerschmidt, M., Seibert, M. M., Sjöhamn, J., Stellato, F., Weierstall, U., Zatsepin, N. A., Spence, J. C. H., Fromme, P., Schlichting, I., Boutet, S., Groenhof, G., Chapman, H. N., and Neutze, R. (2014). “Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser,” Nat. Methods 11, 923926.Google Scholar
Barty, A., Caleman, C., Aquila, A., Timneanu, N., Lomb, L., White, T. A., Andreasson, J., Arnlund, D., Bajt, S., Barends, T. R. M., Barthelmess, M., Bogan, M. J., Bostedt, C., Bozek, J. D., Coffee, R., Coppola, N., Davidsson, J., DePonte, D. P., Doak, R. B., Ekeberg, T., Elser, V., Epp, S. W., Erk, B., Fleckenstein, H., Foucar, L., Fromme, P., Graafsma, H., Gumprecht, L., Hajdu, J., Hampton, C. Y., Hartmann, R., Hartmann, A., Hauser, G., Hirsemann, H., Holl, P., Hunter, M. S., Johansson, L., Kassemeyer, S., Kimmel, N., Kirian, R. A., Liang, M., Maia, F. R. N. C., Malmerberg, E., Marchesini, S., Martin, A. V., Nass, K., Neutze, R., Reich, C., Rolles, D., Rudek, B., Rudenko, A., Scott, H., Schlichting, I., Schulz, J., Seibert, M. M., Shoeman, R. L., Sierra, R. G., Soltau, H., Spence, J. C. H., Stellato, F., Stern, S., Strueder, L., Ullrich, J., Wang, X., Weidenspointner, G., Weierstall, U., Wunderer, C. B., and Chapman, H. N. (2012). “Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements,” Nat. Photonics 6(1), 3540.Google Scholar
Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A., and Chapman, H. (2014). “Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data,” J. Appl. Crystallogr. 47(Pt 3), 11181131.Google Scholar
Boutet, S., and Williams, G. J. (2010). “The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS),” New J. Phys. 12(3), 035024.Google Scholar
Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., Weierstall, U., DePonte, D. P., Steinbrener, J., Shoeman, R. L., Messerschmidt, M., Barty, A., White, T. A., Kassemeyer, S., Kirian, R. A, Seibert, M. M., Montanez, P. A, Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S. M., Philipp, H. T., Tate, M. W., Hromalik, M., Koerner, L. J., van Bakel, N., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M. J., Caleman, C., Fromme, R., Hampton, C. Y., Hunter, M. S., Johansson, L. C., Katona, G., Kupitz, C., Liang, M., Nass, A. V, Martin, K., Redecke, L., Stellato, F., Timneanu, N., Wang, D., Zatsepin, N. A, Schafer, D., Defever, J., Neutze, R., Fromme, P., Spence, J. C. H., Chapman, H. N., and Schlichting, I. (2012). “High-resolution protein structure determination by serial femtosecond crystallography,” Science (NY), 337(6092), 362364.CrossRefGoogle ScholarPubMed
Chapman, H. N., Fromme, P., Barty, A., White, T. a., Kirian, R. a., Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U., Doak, R. B., Maia, F. R. N. C., Martin, A. V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K.-U., Messerschmidt, M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y., Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N., Seibert, M. M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C.-D., Krasniqi, F., Bott, M., Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M., Barends, T. R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B., and Spence, J. C. H. (2011). “Femtosecond X-ray protein nanocrystallography,” Nature 470(7332), 73-U81.Google Scholar
DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H., and Doak, R. B. (2008). “Gas dynamic virtual nozzle for generation of microscopic droplet streams,” J. Phys. D: Appl. Phys. 41(19), 195505.Google Scholar
Gati, C., Bourenkov, G., Klinge, M., Rehders, D., Stellato, F., Oberthür, D., Yefanov, O., Sommer, B. P., Mogk, S., Duszenko, M., Betzel, C., Schneider, T. R., Chapman, H. N., and Redecke, L. (2014). “Serial crystallography on in vivo grown microcrystals using synchrotron radiation,” IUCrJ 1(Pt 2), 8794.Google Scholar
Geller, S. (1971). “Structure of α-Mn2O3 (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering,” Acta Crystallogr. B: Struct. Crystallogr. Cryst. Chem. 27(4), 821828.Google Scholar
He, B. B. (2009). Two-Dimensional X-Ray Diffraction (John Wiley & Sons, Inc., Hoboken, NJ), pp. 133190.Google Scholar
Jirák, Z., Krupička, S., Šimša, Z., Dlouhá, M., and Vratislav, S. (1985). “Neutron diffraction study of Pr1 − xCa x MnO3 perovskites,” J. Magn. Magn. Mater. 53(1–2), 153166.Google Scholar
Kirian, R. A., White, T. A., Holton, J. M., Chapman, H. N., Fromme, P., Barty, A., Lomb, L., Aquila, A., Maia, F. R. N. C., Martin, A. V., Fromme, R., Wang, X., Hunter, M. S., Schmidt, K. E., and Spence, J. C. H. (2011). “Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals,” Acta Crystallogr. A: Found. Crystallogr. 67(Pt 2), 131140.Google Scholar
Lomb, L., Barends, T. R. M., Kassemeyer, S., Aquila, A., Epp, S. W., Erk, B., Foucar, L., Hartmann, R., Rudek, B., Rolles, D., Rudenko, A., Shoeman, R. L., Andreasson, J., Bajt, S., Barthelmess, M., Barty, A., Bogan, M. J., Bostedt, C., Bozek, J. D., Caleman, C., Coffee, R., Coppola, N., Deponte, D. P., Doak, R. B., Ekeberg, T., Fleckenstein, H., Fromme, P., Gebhardt, M., Graafsma, H., Gumprecht, L., Hampton, C. Y., Hartmann, A., Hauser, G., Hirsemann, H., Holl, P., Holton, J. M., Hunter, M. S., Kabsch, W., Kimmel, N., Kirian, R. A., Liang, M., Maia, F. R. N. C., Meinhart, A., Marchesini, S., Martin, A. V., Nass, K., Reich, C., Schulz, J., Seibert, M. M., Sierra, R., Soltau, H., Spence, J. C. H., Steinbrener, J., Stellato, F., Stern, S., Timneanu, N., Wang, X., Weidenspointner, G., Weierstall, U., White, T. A., Wunderer, C., Chapman, H. N., Ullrich, J., Strüder, L., and Schlichting, I. (2011). “Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(21), 214111.Google Scholar
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D., and Lwin, T. (2001). “Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 1a to 1h,” J. Appl. Crystallogr. 34(4), 409426.Google Scholar
Redecke, L., Nass, K., Deponte, D. P., White, T. A., Rehders, D., Barty, A., Stellato, F., Liang, M., Barends, T. R. M., Boutet, S., Williams, G. J., Messerschmidt, M., Seibert, M. M., Aquila, A., Arnlund, D., Bajt, S., Barth, T., Bogan, M. J., Caleman, C., Chao, T. C., Doak, R. B., Fleckenstein, H., Frank, M., Fromme, R., Galli, L., Grotjohann, I., Hunter, M. S., Johansson, L. C., Kassemeyer, S., Katona, G., Kirian, R. A., Koopmann, R., Kupitz, C., Lomb, L., Martin, A. V., Mogk, S., Neutze, R., Shoeman, R. L., Steinbrener, J., Timneanu, N., Wang, D., Weierstall, U., Zatsepin, N. A., Spence, J. C. H., Fromme, P., Schlichting, I., Duszenko, M., Betzel, C., and Chapman, H. N. (2013). “Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser,” Science (NY) 339(6116), 227230.Google Scholar
Scardi, P., and Leoni, M. (2001). “Diffraction line profiles from polydisperse crystalline systems,” Acta Crystallogr. A: Found. Crystallogr. 57(5), 604613.Google Scholar
Scardi, P., Leoni, M., and Delhez, R. (2004). “Line broadening analysis using integral breadth methods: a critical review,” J. Appl. Crystallogr. 37(3), 381390.Google Scholar
Sellberg, J. A., Huang, C., McQueen, T. A., Loh, N. D., Laksmono, H., Schlesinger, D., Sierra, R. G., Nordlund, D., Hampton, C. Y., Starodub, D., DePonte, D. P., Beye, M., Chen, C., Martin, A. V., Barty, A., Wikfeldt, K. T., Weiss, T. M., Caronna, C., Feldkamp, J., Skinner, L. B., Seibert, M. M., Messerschmidt, M., Williams, G. J., Boutet, S., Pettersson, L. G. M., Bogan, M. J., and Nilsson, A. (2014). “Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature,” Nature 509(7505), 381384.Google Scholar
Stellato, F., Oberthür, D., Liang, M., Bean, R., Gati, C., Yefanov, O., Barty, A., Burkhardt, A., Fischer, P., Galli, L., Kirian, R. A., Meyer, J., Panneerselvam, S., Yoon, C. H., Chervinskii, F., Speller, E., White, T. A., Betzel, C., Meents, A., and Chapman, H. N. (2014). “Room-temperature macromolecular serial crystallography using synchrotron radiation,” IUCrJ 1(4), 204212.Google Scholar
White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., and Chapman, H. N. (2012). CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45(2), 335341.Google Scholar
Williamson, G., and Hall, W. (1953). “X-ray line broadening from filed aluminium and wolfram,” Acta Metall. 1(1), 2231.Google Scholar