Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T05:51:17.278Z Has data issue: false hasContentIssue false

Tetragonal low-temperature phase of MgCr2O4

Published online by Cambridge University Press:  05 March 2012

H. Ehrenberg*
Affiliation:
Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt, Petersenstr. 23, Germany
M. Knapp
Affiliation:
Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt, Petersenstr. 23, Germany
C. Baehtz
Affiliation:
Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt, Petersenstr. 23, Germany
S. Klemme
Affiliation:
Institute for Mineralogy, University of Heidelberg, D-69120 Heidelberg, Im Neuenheimer Feld 236, Germany
*
a)Author to whom correspondence should be addressed; electronic mail: [email protected]; phone: +49 6151 164391; fax: +49 6151 166023.

Abstract

Magnesiumchromite, MgCr2O4, undergoes a structural transition from a cubic spinel structure [space group Fd3m, a=8.32768(4) Å at 16 K] into a tetragonal distorted structure [space group I41/amd, a=5.89199(5) Å, c=8.31677(8) Å at 10 K], isotypic with Hausmannite, Mn3O4. This phase transition is translationengleich and takes place very close or at the antiferromagnetic ordering temperature.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, T., Lager, G. A., Ihringer, J., Rotella, F. J., and Jorgensen, J. D. (1983). “Neutron and X-ray-powder study of phase-transitions in the spinel NiCr2O4,” Z. Kristallogr. ZEKRDZ 162, 810. zek, ZEKRDZ Google Scholar
Bergerhoff, G., Hundt, R., Sievers, R., and Brown, I. D. (1983). “The inorganic crystal-structure data-base,” J. Chem. Inf. Comput. Sci. JCISD8 23, 6669. 58w, JCISD8 CrossRefGoogle Scholar
Crottaz, O., Kubel, F., and Schmid, H. (1997). “Jumping crystals of the spinels NiCr2O4,” J. Mater. Chem. JMACEP 7, 143146. jtc, JMACEP CrossRefGoogle Scholar
Dollase, W. A.and O’Neill, H. S. C. (1997). “The Spinels CuCr2O4 and CuRh2O4,Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 53, 657659. acg, ACSCEE CrossRefGoogle Scholar
Gerard, A., Hartmann-Boutron, F., Imbert, P., Johanno, G., Kleinberger, R., de Kouchkovsky, R., and Vorret, F. (1968). Preprint, SPSRM de Saclay.Google Scholar
Ihringer, J.and Küster, A. (1993). “Cryostat for synchrotron powder diffraction with sample rotation and controlled gas atmosphere in the sample chamber,” J. Appl. Crystallogr. JACGAR 26, 135137. acr, JACGAR CrossRefGoogle Scholar
Jarosch, D. (1987). “Crystal structure refinement and reflectance measurements of Hausmannite, Mn3O4,Mineral. Petrol. ZZZZZZ 37, 1523.CrossRefGoogle Scholar
Kino, Y., Lüthi, B., and Mullen, M. E. (1972). “Cooperative Jahn–Teller phase-transition in nickel–zinc chromite-system,” J. Phys. Soc. Jpn. JUPSAU 33, 687697. jup, JUPSAU CrossRefGoogle Scholar
Klemme, S.and O’Neill, H. S. (2000). “The near-solidus transition from garnet lherzolite to spinel lherzolite,” Contrib. Mineral. Petrol. CMPEAP 138, 237248. cmx, CMPEAP CrossRefGoogle Scholar
Klemme, S., O’Neill, H. S. C., Schnelle, W., and Gmelin, E. (2000). “The heat capacities of MgCr2O4, FeCr2O4 and Cr2O3 at low temperatures, and derived thermodynamic properties,” Am. Mineral. AMMIAY 85, 16861693. amn, AMMIAY CrossRefGoogle Scholar
Knapp, M., Ehrenberg, H., Fuess, H., Hahn, U., Hesse, M., Schulte-Schrepping, H., and Wroblewski, T. (2001). “Pneumatically bent mirrors: An additional degree of freedom for beam conditioning in high-resolution powder diffraction,” Nucl. Instrum. Methods Phys. Res. A NIMAER 467–468, 291293. nia, NIMAER CrossRefGoogle Scholar
O’Neill, H. S.and Dollase, W. A. (1994). “Crystal-structures and cation distributions in simple spinels from powder XRD structural refinements—MgCr2O4, ZnCr2O4, Fe3O4 and the temperature-dependence of the cation distribution in ZnAl2O4,” Phys. Chem. Miner. PCMIDU 20, 541555. pch, PCMIDU CrossRefGoogle Scholar
Plumier, R. (1968). “Etude par diffractiondes neutrons du compose spinelle normal MgCr2O4,” C. R. Acad. Sci. Paris ZZZZZZ 267, B98101.Google Scholar
Plumier, R.and Sougi, M. (1969). “Etude par diffractiondes neutrons du compose spinelle MgCr2O4,” C. R. Acad. Sci. Paris ZZZZZZ 268, B365367.Google Scholar
Prince, E. (1957). “Crystal and magnetic structure of copper chromite,” Acta Crystallogr. ACCRA9 10, 554556. acc, ACCRA9 CrossRefGoogle Scholar
Prince, E. (1961). “Structure of nickel chromite,” J. Appl. Phys. JAPIAU 32, 6869. jap, JAPIAU CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Shaked, H., Hastings, J. M., and Corliss, L. M. (1970). “Magnetic structure of magnesium chromite,” Phys. Rev. B PLRBAQ 1, 31163124. prq, PLRBAQ CrossRefGoogle Scholar
Shirane, G., Cox, D. E., and Pickart, J. (1964). “Magnetic structures in FeCr2S4 and FeCr2O4,” J. Appl. Phys. JAPIAU 35, 954955. jap, JAPIAU CrossRefGoogle Scholar
Ueno, G., Sato, S., and Kino, Y. (1999). “The low-temperature tetragonal phase of NiCr2O4,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 55, 19631966. acg, ACSCEE CrossRefGoogle Scholar
Ye, Z.-G., Crottaz, O., Vaudano, F., Kubel, F., Tissot, P., and Schmid, H. (1994). “Single crystal growth, structure refinement, ferroelastic domains and phase transitions of the Hausmannite CuCr2O4—A potential magnetoelectric material,” Ferroelectrics FEROA8 162, 103118. fer, FEROA8 CrossRefGoogle Scholar