Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T00:36:59.929Z Has data issue: false hasContentIssue false

Systematic crystallographic refinement of triclinic unit cells

Published online by Cambridge University Press:  10 January 2013

Ludo K. Frevel
Affiliation:
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

Abstract

Combining the exhaustive indexing of triclinic powder diffraction patterns with a crystallographic determination of unit cell parameters from pinacoid and prism reflections yields unit cell parameters with realistic limits of error. Additionally a referee method has been developed by which the six reciprocal cell parameters of a triclinic phase are determined by solving an exhaustive set of linear simultaneous equations in six unknowns.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E., and Evans, H. T. J. (1973). Rep. No. PB216188, U.S. Dept. of Commerce, National Technical Information Service, 5825 Port Royal Rd., Springfield, VA 22151.Google Scholar
Appleman and Evans (1987). Personal Communication, Gerald G. Johnson, Jr.Google Scholar
Bond, W. L. (1960). “Precision Lattice Constant Determination,” Acta Crystallogr. 13, 814818.CrossRefGoogle Scholar
de Wolff, P. M. (1972). Technisch Physische Dienst (Delft, Netherlands), JCPDS Grant-in-Aid Report No. PDF 11-646.Google Scholar
Fawcett, J. K., Camerman, N., and Camerman, A. (1977). “Crystal Structure of Diphenylsilanediol,” Can. J. Chem. 55, 3631–363.CrossRefGoogle Scholar
Frevel, L. K. (1964). “The Determination of Axial Ratios from Powder Diffraction Patterns,” Acta Crystallogr. 17, 907917.Google Scholar
Frevel, L. K. (1978). “Error Analysis of 2θ Powder Data for Cubic or Uniaxial Phases,” J. Appl. Crystallogr. 11, 184189.Google Scholar
Frevel, L. K. (1983). “An Error Assessment of Single-Crystal 2θ Data from Four-Circle Diffractometry,” J. Appl. Crystallogr. 16, 126132.CrossRefGoogle Scholar
Frevel, L. K. (1994). “Exhaustive Indexing of Triclinic Powder Diffraction Patterns with Known Unit Cell Parameters,” Powder Diffr. 9, 8792.Google Scholar
Hill, R. J., and Cranswick, L. H. D. (1994). “Rietveld Refinement Round-Robin Analysis of Monoclinic ZrO 2,J. Appl. Crystallogr. 27, 802844.Google Scholar
Ievinsh, A. F., and Ozol, R. K. (1954). Dokl. Akad. Nauk 98, 589–591.Google Scholar
Kistenmacher, T. J., Rossi, M., and Frevel, L. K. (1978). “Crystal Data for Diphenylsilanediol,” J. Appl. Crystallogr. 11, 670671.Google Scholar
Mäder, J. (1942). “Kristallographie und Optik des Kupfervitriols,” Schweiz. Min. Petr. Mitt. 22, 197–232.Google Scholar
Parrish, W. (1960). “Results of the I.U.Cr. Precision Lattice-Parameter Project,” Acta Crystallogr. 13, 838850.Google Scholar
Smith, D. K., and Gorter, S. (1991). “Powder Diffraction Program Information, 1990 Program List,” J. Appl. Crystallogr. 24, 369402.Google Scholar
Visser, J. W. (1978). Technische Physische Dienst (Delft, Netherlands), JCPDS Grant-in-Aid Report No. PDF 20-363.Google Scholar