Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:23:20.676Z Has data issue: false hasContentIssue false

Synthesis and X-ray powder diffraction data of N-benzyl-6-chloro-4-(4-methoxyphenyl)-3-methyl-1,2,3,4-tetrahydroquinoline

Published online by Cambridge University Press:  30 November 2012

J. A. Pinilla
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
J. A. Henao*
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
M. A. Macías
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
Arnold R. Romero Bohórquez
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Centro de Investigación en Biomoléculas, (CIBIMOL), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
Vladimir V. Kouznetsov
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Centro de Investigación en Biomoléculas, (CIBIMOL), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
*
a)To whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The N-benzyl-6-chloro-4-(4-methoxyphenyl)-3-methyl-1,2,3,4-tetrahydroquinoline derivative (chemical formula: C24H24ClNO) was obtained from cationic imino Diels–Alder reaction catalyzed by BF3.OEt2. Molecular characterization was performed by 1H and 13C NMR, Fourier transform-infrared and gas chromatography-mass spectrometry. The X-ray powder diffraction (XRPD) pattern for the new compound was analyzed and found to be crystallized in an orthorhombic system with space group Fdd2 (No. 43) and refined unit-cell parameters a = 33.053(7) Å, b = 41.558(9) Å, c = 5.841(1) Å and V = 8023(2) Å3.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beifuss, U. and Ledderhose, S. (1995). “Intermolecular polar [4π + +2π] cycloadditions of cationic 2-azabutadienes from thiomethylamines: a new and efficient method for Regio- and Diastereo-selective synthesis of 1,2,3,4-tetrahydroquinolines,” Chem. Commun. 20, 21372138.CrossRefGoogle Scholar
Boultif, A. and Loüer, D. (2006). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Buhrke, V., Jenkins, R., and Smith, D. (1998). Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis (Wiley, New York), pp. 141142.Google Scholar
Buonora, P., Olsen, J. C., and Oh, T. (2001). “Recent developments in imino Diels–Alder reactions,” Tetrahedron 64, 60996138.CrossRefGoogle Scholar
Chen, R. and Quian, C. (2002). “One-pot synthesis of tetrahydroquinolines catalyzed by Dy(OTf)3 in aqueous solution,” Synth. Commun. 16, 25432548.CrossRefGoogle Scholar
Crousse, B., Bèguè, J. P., and Bonner-Delpon, D. (2000). “Synthesis of 2-CF3-tetrahydroquinoline and quinoline derivatives from CF3-N-Aryl-aldimine,” J. Org. Chem. 65, 50095013.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Dehnhardt, C. M., Espinal, Y., and Venkatesan, A. M. (2008). “Practical one-pot procedure for the synthesis of 1,2,3,4-tetrahydroquinolines by the imino-Diels–Alder reaction,” Synth. Commun. 38, 796802.CrossRefGoogle Scholar
Dong, C. (1999). “POWDERX: Windows95 based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. 32, 833838.CrossRefGoogle Scholar
Glushkov, V. A. and Tolstikov, A. G. (2008). “Synthesis of substituted 1,2,3,4-tetrahydroquinones by the Povarov reaction. New potentials of the classical reaction,” Russ. Chem. Rev. 77, 137159.CrossRefGoogle Scholar
Jacquemond-Collet, L., Benoit-Vical, F., Mustofa, V., Stanislas, A., Mallié, E., and Fourasté, I. (2002). “Antiplasmodial and cytotoxic activity of galipinine and other tetrahydroquinolines from Galipea officinalis,” Planta Med. 68, 6869.CrossRefGoogle ScholarPubMed
Katritzky, A. R., Rachwal, S., and Rachwal, B. (1996). “Recent progress in the synthesis of 1,2,3,4 tetrahydroquinolines,” Tetrahedron 52, 1503115070.CrossRefGoogle Scholar
Kim, Y., Shin, E. K., Beak, P., and Park, Y. S. (2006). “Asymmetric syntheses of 3,4-substituted tetrahydroquinoline derivatives by (−)-sparteine-mediated dynamic thermodynamic resolution of 2-(α-Lithiobenzyl)-N-pivaloylaniline,” Synthesis 2006, 38053808.Google Scholar
Kouznetsov, V., Palma, A., Ewert, C., and Varlamov, A. (1998). “Some aspects of reduced quinoline chemistry,” J. Heterocycl. Chem. 35, 761785.CrossRefGoogle Scholar
Kouznetsov, V. V. (2009). “Recent synthetic developments in a powerful imino Diels–Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids,” Tetrahedron 65, 27212750.CrossRefGoogle Scholar
Kouznetsov, V. V. and Romero Bohórquez, A. R. (2010). “An efficient and short synthesis of 4-aryl-3-methyltetrahydroquinolines from N-benzylanilines and propenylbenzenes through cationic imino Diels–Alder reactions,” Synlett 6, 970972.CrossRefGoogle Scholar
Kouznetsov, V. V., Romero Bohórquez, A. R., and Stashenko, E. E. (2007). “Three-component imino Diels–Alder reaction with essential oil and seeds of anise: generation of new tetrahydroquinolines,” Tetrahedron Lett. 48, 88558860.CrossRefGoogle Scholar
Kouznetsov, V. V., Merchan Arenas, D. R., and Romero Bohórquez, A. R. (2008) “PEG-400 as green reaction medium for Lewis acidpromoted cycloaddition reactions with isoeugenol and anethole,” Tetrahedron Lett. 49, 30973100.CrossRefGoogle Scholar
Kyselov, A., Smith, L., and Armstrong, R. (1998). “Solid support synthesis of polysubstituted tetrahydroquinolines via three-component condensation catalyzed by Yb(OTf)3,” Tetrahedron 54, 50895096.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS* AIDS83: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Technical Note 1141.CrossRefGoogle Scholar
Rachinger, W. A. (1948). “A correction for the α 1α 2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254255.CrossRefGoogle Scholar
Savitzky, A. and Golay, M. J. (1964) “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.CrossRefGoogle Scholar
Wallace, O. B., Lauwers, K. S., Jones, S. A., and Dodge, J. A. (2003). “Tetrahydroquinoline-based selective estrogen receptor modulators (SERMs),” Bioorg. Med. Chem. Lett. 13, 19071910.CrossRefGoogle ScholarPubMed