Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T05:34:40.170Z Has data issue: false hasContentIssue false

Synthesis and X-ray characterization of Li0.5M0.25TiOAsO4 (M=Mg,Co,Ni,Zn) oxyarsenates

Published online by Cambridge University Press:  01 March 2012

M. Chakir
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Université Hassan II, Faculté des Sciences Ben M 'Sik, Casablanca, Morocco
A. El Jazouli
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Université Hassan II, Faculté des Sciences Ben M 'Sik, Casablanca, Morocco
J. P. Chaminade
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, 87, Av. Dr. Schweitzer, 33608 Pessac, France

Abstract

Li0.5M0.25TiOAsO4 (M=Mg,Co,Ni,Zn) oxyarsenates powders were prepared by coprecipitation method from dilute solution of Li2CO3,M(NO3)2×H2O (M=Mg,Co,Ni,Zn), (NH4)H2AsO4 and TiCl4 in ethanol. The resulting powders, obtained after drying at about 60 °C, were heated progressively with intermittent grindings at 200 °C–750 °C in air. These new compounds crystallize in the monoclinic system with space group P21c. Their parameters are functions of M2+ ion size.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belharouak, I. and Khali, A. (2005). “New active titanium oxyphosphate material for lithium batteries,” Electrochem. Commun. ECCMF9 7, 648651.CrossRefGoogle Scholar
Bierlein, J. D. and Vanherzeele, H. (1989). “Potassium titany1 phosphate: properties and new applications,” J. Opt. Soc. Am. B JOBPDE 6, 622633.CrossRefGoogle Scholar
Chakir, M. (2003). “Etude structurale et spectroscopique de nouveaux phosphates et arséniates de type structural Nasicon ou à squelette KTP,” thesis, Université Hassan II, Casablanca.Google Scholar
Chakir, M., El Jazouli, A., Chaminade, J. P., and Bouree, F. (unpublished). “The structure of Li0.5M0.25TiOAsO4 (M=Mg,Co,Ni,Zn) oxyarsenates.”Google Scholar
Chakir, M., El Jazouli, A., Chaminade, J. P., Bouree, F., and De Waal, D. (2006). “New process of preparation, X-ray characterisation, structure and vibrational studies of a solid solution LiTiOAs1−xPxO4 (0⩽x⩽1),” J. Solid State Chem. JSSCBI 179, 1828.CrossRefGoogle Scholar
Gravereau, P., Chaminade, J. P., Manoun, B., Krimi, S., and El Jazouli, A. (1999). “Ab initio determination and Rietveld refinement of the crystal structure of Ni0.5TiOPO4,” Powder Diffr. PODIE2 14, 1015.CrossRefGoogle Scholar
Manoun, B., El Jazouli, A., Gravereau, P., and Chaminade, J. P. (2005). “Rietveld refinements of solid solution Li(1−2x)NixTiOPO4 (0⩽x⩽0.50),” Mater. Res. Bull. MRBUAC 40, 229238.CrossRefGoogle Scholar
Robertson, A., Fletcher, J. G., Skakle, J. M. S., and West, A. R. (1994). “Synthesis of LiTiPO5 and LiTiAsO5 with the α-Fe2PO5 structure,” J. Solid State Chem. JSSCBI 10.1006/jssc.1994.1070 109, 5359.CrossRefGoogle Scholar
Shannon, R. D. and Prewitt, C. T. (1969). “Effective ionic radii in oxides and fluorides,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 10.1107/S0567740869003220 25, 925946.CrossRefGoogle Scholar
Stucky, G. D., Phillips, M. L. F., and Gier, T. E. (1989). “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. CMATEX 1, 493501.CrossRefGoogle Scholar
Tordjman, I., Masse, R., and Guitel, J. C. (1974). “Structure cristalline du monophosphate KTiPO5,” Z. Kristallogr. ZEKRDZ 139, 103115.CrossRefGoogle Scholar