Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T15:25:08.583Z Has data issue: false hasContentIssue false

Synthesis and structural study from X-ray powder diffraction of Pb0.5Th2(PO4)3

Published online by Cambridge University Press:  10 January 2013

A. El-Yacoubi
Affiliation:
Laboratoire de Chimie du Solide, Faculté des Sciences, Rabat, Morocco
R. Brochu
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (URA CNRS 1495), Groupe de Cristallochimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
A. Serghini
Affiliation:
Laboratoire de Chimie du Solide, Faculté des Sciences, Rabat, Morocco
M. Louër
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (URA CNRS 1495), Groupe de Cristallochimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
M. Alami Talbi
Affiliation:
Laboratoire de Chimie du Solide, Faculté des Sciences, Rabat, Morocco
D. Louër
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (URA CNRS 1495), Groupe de Cristallochimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France

Abstract

A new mixed lead thorium phosphate, Pb0.5Th2(PO4)3, has been isolated in the system PbO–ThO2–P2O5. Its crystal structure (monoclinic symmetry, a=17.459(1) Å, b=6.8451(4) Å, c=8.1438(5) Å, β=101.247(5)°, space group C2/c) has been determined from conventional monochromatic X-ray powder diffraction data. The structure is related to the MITh2(PO4)3 structure type. Lead atoms are located in the channels parallel to the c axis, out of the twofold axis for 0.97 Å, and are statistically distributed on a quarter of crystallographic positions. The thermal stability of this material is greater than that of the monazite-type compound PbTh(PO4)2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M., Louër, D., and Quarton, M. (1996). “Th4(PO4)4P2O7, a New Thorium Phosphate: Synthesis, Characterization, and Structure Determination,” Chem. Mater. 8, 181188.CrossRefGoogle Scholar
Boultif, A., and Louër, D. (1991). “Indexing of Powder Diffraction Patterns for Low Symmetry Lattices by the Successive Dichotomy Method,” J. Appl. Crystallogr. 24, 987993.CrossRefGoogle Scholar
Keester, K. L., and Jacobs, J. T. (1974). “Ferroelectric Compounds of the type AB2(XO4)3,” Ferroelectrics 8, 657664.CrossRefGoogle Scholar
Krabbenhoft, D., and McCarthy, G., PDF-2 File No. 33-775, International Centre for Diffraction Data, Newtown Square, PA (USA) (1995).Google Scholar
Laügt, M. (1973). “Données Cristallographiques sur CuTh2(PO4)3 et TlTh2(PO4)3,” J. Appl. Crystallogr. 6, 299301.CrossRefGoogle Scholar
Louër, M., Brochu, R., Louër, D., Arsalane, S., and Ziyad, M. (1995). “Structure Determination of CuTh2(PO4)3,” Acta Crystallogr. 51, 908913.CrossRefGoogle Scholar
Louër, D., and Langford, J. I. (1988). “Peak Shape and Resolution in Conventional Diffractometry with Monochromatic X-rays,” J. Appl. Crystallogr. 21, 430437.CrossRefGoogle Scholar
Matkovic, B., Prodic, B., and Sljukic, M. (1968a). “Preparation and Structural Studies of Phosphates with Common Formula MIM2IV(PO4)3,” Bull. Soc. Chim. Fr. 1777–1779.Google Scholar
Matkovic, B., Prodic, B., and Sljukic, M. (1968b). “The Crystal Structure of Potassium Dithorium Triphosphate, KTh2(PO4)3,” Croat. Chem. Acta 40, 147161.Google Scholar
Matkovic, B., Prodic, B., Sljukic, M., and Topic, M. (1969). “The Crystal Structure of NaTh2(PO4)3,” Acta Crystallogr. 25, S101.Google Scholar
Matkovic, B., Kojic-Prodic, B., Sljukic, M., Topic, M., Willet, R. D., and Willet, F. (1970). “The crystal Structure of a new Ferroelectric Compound, NaTh2(PO4)3,” Inorg. Chim. Acta 4, 571576CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS*AIDS80: A FORTRAN Program for Crystallographic Data Evaluation,” Nat. Bur. Stand. (U.S.) Tech. Note 1141. (NBS*AIDS83 is an expanded version of NBS*AIDS80.)CrossRefGoogle Scholar
Quarton, M., Zouiri, M., and Freundlich, W. (1984). “Cristallochimie des Orthophosphates Doubles de Thorium et de Plomb,” C. R. Acad. Sci. Paris, Sér. II, 299, 785–788.Google Scholar
Rodriguez Carvajal, J. (1990). “FULLPROF: A Program for Rietveld refinement and Pattern Matching Analysis,” Collected Abstracts of Powder Diffraction Meeting, Toulouse, France, July 1990, pp. 127–128.Google Scholar
Schmid, W. F., and Mooney, R. W. (1964). “Copper-Activated Thorium Phosphate Phosphors,” J. Electrochem. Soc. 111, 668673.CrossRefGoogle Scholar
Schwarz, H. (1964). “Phosphate und Arsenate,” Z. Anorg. Allg. Chem. 334, 175185.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogr. 32, 751767.CrossRefGoogle Scholar
Topic, M., Napijalo, M., Popovic, S., and Zeljic, Z. (1972), “Temperature Dependence of some Properties of NaTh2(PO4)3 Ferroelectric Crystals,” Phys. Status Solidi A 11, 787790.CrossRefGoogle Scholar
Wells, A. F. (1982). Structural Inorganic Chemistry (Oxford U. P., New York).Google Scholar