Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T05:38:20.399Z Has data issue: false hasContentIssue false

Synthesis and crystal structure of layered molybdate NH4Co2OH(MoO4)2⋅H2O

Published online by Cambridge University Press:  28 September 2023

Paweł Adamski*
Affiliation:
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
Aleksander Albrecht
Affiliation:
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
Dariusz Moszyński
Affiliation:
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A new compound NH4Co2OH(MoO4)2⋅H2O was prepared by precipitation of aqueous solutions of cobalt nitrate and ammonium heptamolybdate at pH = 7.5. The crystal structure was identified by X-ray powder diffraction (XRPD) and Rietveld refinement as a known polymorph of layered molybdates (Φy) with general formula AT2OH(MoO4)2⋅H2O (A = NH4+, Na+, K+ and T = Zn2+, Co2+, Cu2+, Ni2+) and refined from a model based on that structure. The lattice parameters were refined with R-3 space group (148) a = 6.1014(2) Å, b = 6.1014(2) Å, c = 21.826(1) Å, α = 90°, β = 90°, and γ = 120°.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clearfield, A., Michael, J. S., and Ramanathan, G.. 2002. “Heavy-Metal Molybdates. I. Crystal Structure of a Basic Zinc Molybdate, NaZn2OH(H2O)(MoO4)2.” Inorganic Chemistry 15 (2): 335–38. doi:10.1021/ic50156a019.CrossRefGoogle Scholar
Courtine, P., Cord, P. P., Pannetier, G., Daumas, J. C., and Montarnal, R.. 1968. “Contribution à l’étude du molybdate de cobalt anhydre. II.–Isotypie et isomorphism de MgMoO4 et CoMoO4 (a) stabilité de la Phase (a).” Bulletin de la Société Chimique de France 12: 4816–20.Google Scholar
Degen, T., Sadki, M., Egbert, B., König, U., and Nénert, G.. 2014. “The HighScore Suite.” Powder Diffraction 29 (S2): S1318. doi:10.1017/S0885715614000840.CrossRefGoogle Scholar
Ding, Y., Yong, W., Min, Y. L., Zhang, W., and Yu, S. H.. 2008. “General Synthesis and Phase Control of Metal Molybdate Hydrates MMoO4⋅nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) Nano/Microcrystals by a Hydrothermal Approach: Magnetic, Photocatalytic, and Electrochemical Properties.” Inorganic Chemistry 47 (17): 7813–23. doi:10.1021/ic8007975.CrossRefGoogle Scholar
Dollase, W. 1986. “Correction of Intensities for Preferred Orientation in Powder Diffractometry: Application of the March Model.” Journal of Applied Crystallography 19: 267–72. doi:10.1107/S0021889886089458.CrossRefGoogle Scholar
Eda, K., Uno, Y., Nagai, Y., Sotani, N., and Whittingham, M. S.. 2005. “Crystal Structure of Cobalt Molybdate Hydrate CoMoO4⋅nH2O.” Journal of Solid State Chemistry 178 (9): 2791–97. doi:10.1016/j.jssc.2005.06.014.CrossRefGoogle Scholar
Eda, K., Ohshiro, Y., Nagai, N., Sotani, N., and Whittingham, M. S.. 2009. “Transition Metal Tetramolybdate Dihydrates MMo4O13⋅2H2O (M = Co,Ni) Having a Novel Pillared Layer Structure.” Journal of Solid State Chemistry 182 (1): 5559. doi:10.1016/j.jssc.2008.10.001.CrossRefGoogle Scholar
Gates-Rector, S., and Blanton, T.. 2019. “The Powder Diffraction File: a Quality Materials Characterization Database.” Powder Diffraction 34 (4): 352–60. doi:10.1017/S0885715619000812.CrossRefGoogle Scholar
Haber, J. 1974. “Cobalt and Other Transition-Metal Molybdate Catalysts.” Journal of the Less Common Metals 36 (1): 277–87. doi:10.1016/0022-5088(74)90112-X.CrossRefGoogle Scholar
Haber, J., Sosnowska, A., and Ziółkowski, J.. 1976. “Mechanism of the Solid State Synthesis of Cobalt Molybdite.” Journal of Solid State Chemistry 16 (1): 8389. doi:10.1016/0022-4596(76)90010-4.CrossRefGoogle Scholar
Kim, B. C., Manikandan, R., Yu, K. H., Park, M. S., Kim, D. W., Park, S. Y., and Raj, C. J.. 2019. “Efficient Supercapattery Behavior of Mesoporous Hydrous and Anhydrous Cobalt Molybdate Nanostructures.” Journal of Alloys and Compounds 789 (15): 256–65. doi:10.1016/j.jallcom.2019.03.033.CrossRefGoogle Scholar
Kojima, R., and Aika, K.. 2001. “Cobalt Molybdenum Bimetallic Nitride Catalysts for Ammonia Synthesis - Part 1. Preparation and Characterization.” Applied Catalysis A: General 215 (1): 149–60. doi:10.1016/S0926-860X(01)00529-4.CrossRefGoogle Scholar
Le Bail, A. 2004. “Monte Carlo Indexing with McMaille.” Powder Diffraction 19 (3): 249–54. doi:10.1154/1.1763152.CrossRefGoogle Scholar
Levin, D., Soled, S. L., and Ying, J. Y.. 1996. “Crystal Structure of an Ammonium Nickel Molybdate Prepared by Chemical Precipitation.” Inorganic Chemistry 35 (14): 4191–97. doi:10.1021/ic951200s.CrossRefGoogle ScholarPubMed
Leyzerovich, N. N., Bramnik, K. G., Buhrmester, T., Ehrenberg, H., and Fuess, H.. 2004. “Electrochemical Intercalation of Lithium in Ternary Metal Molybdates MMoO4 (M: Cu, Zn, Ni and Fe).” Journal of Power Sources 127 (1): 7684. doi:10.1016/j.jpowsour.2003.09.010.CrossRefGoogle Scholar
Li, S., Yang, N., Liao, L., Luo, Y., Wang, S., Cao, F., Zhou, W., Huang, D., and Chen, H.. 2018. “Doping β-CoMoO4 Nanoplates with Phosphorus for Efficient Hydrogen Evolution Reaction in Alkaline Media.” ACS Applied Materials and Interfaces 10 (43): 37038–45. doi:10.1021/acsami.8b13266.CrossRefGoogle Scholar
Liu, M. C., Kong, L. B., Ma, X. J., Lu, C., Li, X. M., Luo, Y. C., and Kang, L.. 2012. “Hydrothermal Process for the Fabrication of CoMoO4⋅0.9H2O Nanorods with Excellent Electrochemical Behavior.” New Journal of Chemistry 36 (9): 1713–16. doi:10.1039/C2NJ40278E.CrossRefGoogle Scholar
Livage, C., Hynaux, A., Marrot, J., Nogues, M., and Férey, G.. 2002. “Solution Process for the Synthesis of the “High-Pressure” Phase CoMoO4 and X-ray Single Crystal Resolution.” Journal of Materials Chemistry 12: 1423–25. doi:10.1039/B110760G.CrossRefGoogle Scholar
Mandal, M., Ghosh, D., Giri, S., Shakir, I., and Das, C. K.. 2014. “Polyaniline-Wrapped 1D CoMoO4⋅0.75H2O Nanorods as Electrode Materials for Supercapacitor Energy Storage Applications.” RSC Advances 4 (58): 30832–39. doi:10.1039/C4RA03399J.CrossRefGoogle Scholar
Mitchell, S., Gómez-Avilés, A., Gardner, C., and Jones, W.. 2010. “Comparative Study of the Synthesis of Layered Transition Metal Molybdates.” Journal of Solid State Chemistry 183 (1): 198207. doi:10.1016/j.jssc.2009.10.011.CrossRefGoogle Scholar
Peng, C., Gao, L., Yang, S., and Sun, J.. 2008. “A General Precipitation Strategy for Large-Scale Synthesis of Molybdate Nanostructures.” Chemical Communications 43: 5601–03. doi:10.1039/B812033A.CrossRefGoogle Scholar
Pezerat, H. 1965. “Contribution to the Study of the Hydrated Molybdates of Zinc, Cobalt, and Nickel.” Comptes Rendus Chimie 261 (25): 5490–93.Google Scholar
Rietveld, H. M. 1967. “Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement.” Acta Crystallographica 22: 151–52. doi:10.1107/S0365110X67000234.CrossRefGoogle Scholar
Rodriguez, J. A., Chaturvedi, S., Hanson, J. C., Albornoz, A., and Brito, J. L.. 1998. “Electronic Properties and Phase Transformations in CoMoO4 and NiMoO4: XANES and Time-Resolved Synchrotron XRD Studies.” The Journal of Physical Chemistry B 102 (8): 1347–55. doi:10.1021/jp972137q.CrossRefGoogle Scholar
Smith, G. W., and Ibers, J. A.. 1965. “The Crystal Structure of Cobalt Molybdate CoMoO4.” Acta Crystallographica 19: 269–75. doi:10.1107/S0365110X65003201.CrossRefGoogle Scholar
Tian, Y., Zhou, M., Meng, X., Miao, Y., and Zhang, D.. 2017. “Needle-like CoMoO with Multi-Modal Porosity for Pseudocapacitors.” Materials Chemistry and Physics 198: 258–65. doi:10.1016/j.matchemphys.2017.06.010.CrossRefGoogle Scholar
Wu, C. D., Lu, C. Z., Lin, X., Lu, S. F., Zhuang, H. H., and Huang, J. S.. 2004. “Synthesis, Structural Characterization and Properties of Two New Lamellar Polymers: [NH4H3Cu2Mo2O10] and [KHFe2Mo2O10].” Journal of Alloys and Compounds 368 (1): 342–48. doi:10.1016/j.jallcom.2003.08.075.CrossRefGoogle Scholar
Xu, Y., Xie, L., Li, D., Yang, R., Jiang, D., and Chen, M.. 2018. “Engineering Ni(OH)2 Nanosheet on CoMoO4 Nanoplate Array as Efficient Electrocatalyst for Oxygen Evolution Reaction.” ACS Sustainable Chemistry and Engineering 6 (12): 16086–95. doi:10.1021/acssuschemeng.8b02663.CrossRefGoogle Scholar
Zhao, H., Yang, G., Gao, X., Pang, C. H., Kingman, S. W., and Wu, T.. 2016. “HgO Capture Over CoMoS/γ-Al2O3 with MoS2 Nanosheets at Low Temperatures.” Environmental Science and Technology 50 (2): 1056–64. doi:10.1021/acs.est.5b04278.CrossRefGoogle Scholar
Supplementary material: File

Adamski et al. supplementary material

Adamski et al. supplementary material
Download Adamski et al. supplementary material(File)
File 161.3 KB