Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T05:50:54.287Z Has data issue: false hasContentIssue false

Structure of [Pd(NH3)4]Cr2O7

Published online by Cambridge University Press:  10 January 2013

Y. Laligant
Affiliation:
Laboratoire des Fluorures, CNRS URA 449, Université du Maine, Avenue O. Messiaen, 72017 Le Mans Cedex, France
A. Le Bail
Affiliation:
Laboratoire des Fluorures, CNRS URA 449, Université du Maine, Avenue O. Messiaen, 72017 Le Mans Cedex, France

Abstract

The structure of [Pd(NH3)4]Cr2O7 has been determined ab initio from conventional X-Ray powder diffraction data by the Patterson method. The cell is monoclinic (space group P21/c, Z = 4), with a = 7.771(3) Å, b=11.578(1) Å, c=11.852(4) Å, and β= 105.50(4)°. Refinements of 57 parameters by the Rietveld method, using 852 reflections lead to RB = 0.032, RP = 0.075, and Rwp = 0.092. The structure is built up from PdN4 square planes linked to Cr2O7 groups by hydrogen bonds. Hydrogen atoms could not be located.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorós, P., Beltrán-Porter, D., Le Bail, A., Férey, G., and Villeneuve, G. (1988). “Crystal Structure of A(VO2)(HPO4) (A=NH4,K,Rb) Solved from X-ray Powder Diffraction,” Eur. J. Solid State Inorg. Chem. 25, 535540.Google Scholar
Blum, D., Averbuch-Pouchot, M. T., and Guitel, J. C. (1979). “Structure du Dichromate de Baryum, Forme α,” Acta Crystallogr. B 35, 26852687.CrossRefGoogle Scholar
Borgna, A., Moraweck, B., and Fessler, P. (1989). “X-ray Diffraction and EXAFS Study of Palladium Tetrammine Dichromate, [Pd(NH3)4]Cr2O7,” Powder Diffr. 4, 217219.CrossRefGoogle Scholar
Cheetham, A. K., and Wilkinson, A. P. (1991). “Structure Determination and Refinement with Synchrotron X-ray Powder Diffraction Data,” J. Phys. Chem. Solids 52, 11991208.CrossRefGoogle Scholar
Cheetham, A. K., and Wilkinson, A. P. (1992). “Synchrotron X-ray and Neutron Diffraction Studies in Solid-State Chemistry,” Angew. Chem., Int. Ed. Engl. 31, 15571570.CrossRefGoogle Scholar
Dollase, W. A. (1986). “Correction of Intensities for Preferred Orientation in Powder Diffractometry: Application of the March Model,” J. Appl. Crystallogr. 19, 267272.CrossRefGoogle Scholar
Fourquet, J. L., Le Bail, A., Duroy, H., and Moron, M. C. (1989). “(NH4)2FeF5: Crystal Structures of its α and β forms,” Eur. J. Solid State Inorg. Chem. 26, 435443.Google Scholar
International Tables for X-ray Crystallography (1974). (Kynoch, Birmingham), Vol. IV.Google Scholar
Laligant, Y. (1993a). “On the First Palladium Chromate: Crystal Structure of Pd(NH3)4(CrO4),” Eur. J. Solid State Inorg. Chem. 30, 681688.Google Scholar
Laligant, Y. (1993b). “Crystal Structure of the First Palladium Ammine Molybdate: Pd(NH3)4(MoO4),” Eur. J. Solid State Inorg. Chem. 30, 10171023.Google Scholar
Le Bail, A. (1988a). ARIT4/ARITB User Guide (Univ. of Maine, France).Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988b). “Ab Initio Structure Determination of LiSbWO6 by X-ray Powder Diffraction,” Mat. Res. Bull. 23, 447452.CrossRefGoogle Scholar
Le Bail, A. (1992). “Extracting Structure Factors from Powder Diffraction Data by Iterating Full Pattern Profile Fitting,” NIST Special Publication 846, 213.Google Scholar
March, A. (1932). “Mathematische Theorie der Regelung nach der Korngestalt bei Affiner Deformation,” Z. Kristallogr. 81, 285297.CrossRefGoogle Scholar
McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., and Wong-Ng, W. (1986). “Methods of Producing Standard X-ray Diffraction Powder Patterns,” Powder Diff. 1, 4043.CrossRefGoogle Scholar
Morris, R. E., Harrison, W. T. A., Nicol, J. M., Wilkinson, A. P., and Cheetham, A. K. (1992). “Determination of Complex Structures by Combined Neutron and Synchrotron X-ray Powder Diffraction,” Nature 359, 519522.CrossRefGoogle Scholar
Pawley, G. S. (1981). “Unit-cell Refinements from Powder Diffraction Scans,” J. Appl. Crystallogr. 14, 357361.CrossRefGoogle Scholar
Rietveld, H. M. (1967). “Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement,” Acta Crystallogr. 22, 151152.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A Profile Refinement for Nuclear and Magnetic Structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogr. A 32, 751767.CrossRefGoogle Scholar
Sheldrick, G. M. (1976). SHELX-76, A Program for Crystal Structure Determination (Univ. of Cambridge, Cambridge, England).Google Scholar
Sheldrick, G. M. (1986). SHELXS-86 User Guide (Univ. of Göttingen, Göttingen, W. Germany).Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: A Criterion for Rating Powder Diffraction Patterns and Evaluating the Reliability of Powder-Pattern Indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Tebbe, K. R., and Freckmann, B. (1982). “Untersuchungen an Polyhalogeniden, V (1) Darstellung und Kristallstruktur des Tetramminpalladium(II)-oktaiodids, Pd(NH3)4I8,” Z. Naturforsch. B 37, 542549.CrossRefGoogle Scholar
Werner, P. E., Eriksson, L., and Westdahl, J. (1985). “TREOR, a Semi-exhaustive Trial-and-error Powder Indexing Program for all Symmetries,” J. Appl. Crystallogr. 18, 367370.CrossRefGoogle Scholar
Wilhelmi, K. A. (1967). “The Crystal Structure of Strontium Dichromate, SrCr2O7,” Arkiv Kemi 26, 149156.Google Scholar
Wolf, P. M. de (1968). “A Simplified Criterion for the Reliability of a Powder Pattern Indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar