Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T15:21:54.710Z Has data issue: false hasContentIssue false

Structure of a new compound KBaB5O9 and photoluminescence characteristics of KBaB5O9:Eu3+

Published online by Cambridge University Press:  01 March 2012

Y. P. Sun
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China
Yinxiao Du
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China
W. Y. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China
Ming He
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China
G. M. Cai
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China
X. L. Chen
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China

Abstract

Crystal structure of a new compound KBaB5O9 has been investigated from X-ray powder diffraction data. This compound is isostructural with KSrB5O9 and crystallizes in the monoclinic system with space group P21/c. Unit-cell parameters are a=6.7200(2) Å, b=8.3256(2) Å, c=14.3674(4) Å, and β=92.6103(3) deg. Its structure contains both B3O7 and B3O8 rings, which share a common B atom to form a complex two dimensional network constituting the basic B5O9 unit in the formula. Adjacent networks are bound together by Ba and K atoms, which have eight- and nine-coordinate sites, respectively. In addition, DTA and TGA curves reveal that KBaB5O9 decomposes at 798 °C. Photoluminescence (PL) characteristics of KBaB5O9:Eu3+ have been studied. The PL spectra show the strongest emission at 618 nm and the quench concentration of Eu3+ is 4 at. %.

Type
Representative Papers from the Chinese XRD 2006 Conference
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, P. (1998). “Borate materials in nonlinear optics,” Adv. Mater. (Weinheim, Ger.)ADVMEW10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.3.CO;2-E 10, 979992.3.0.CO;2-N>CrossRefGoogle Scholar
Chen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W. R., and Wu, B. C. (1999). “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.)ADVMEW10.1002/(SICI)1521-4095(199909)11:13<1071::AID-ADMA1071>3.3.CO;2-7 11, 10711078.3.0.CO;2-G>CrossRefGoogle Scholar
Chen, C. T., Wu, B. C., Jiang, A., and You, G. (1985). “New-type ultraviolet SHG crystal-β-BaB2O4,” Sci. Sin., Ser. B (Engl. Ed.)SSBSEF 28, 235243.Google Scholar
Chen, C. T., Wu, Y., Jiang, A., Wu, B. C., You, G., Li, R., and Lin, S. (1989). “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. BJOBPDE 6, 616–612.CrossRefGoogle Scholar
Chen, C. T., Wang, Y., Wu, B., Wu, K., Zeng, W., and Yu, L. (1995). “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature (London)NATUAS10.1038/373322a0 373, 322324.CrossRefGoogle Scholar
Diaz, A. and Keszler, D. A. (1996). “Red, green, and blue Eu2+ luminescence in solid-state borates: a structure-property relationship,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(95)00182-4 31, 147151.CrossRefGoogle Scholar
Diaz, A. and Keszler, D. A. (1997). “Eu2+ luminescence in the borates X 2Z(BO3)2 (X=Ba, Sr; Z=Mg, Ca),” Chem. Mater.CMATEX10.1021/cm9700817 9, 20712077.CrossRefGoogle Scholar
Dirksen, G. J. and Blasse, G. (1991). “Luminescence in the pentaborate LiBa2B5O10,” J. Solid State Chem.JSSCBI 92, 591593.CrossRefGoogle Scholar
Fayos, J., Howie, R. A., and Glasser, F. P. (1985). “Structure of calcium sodium pentaborate,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE 41, 13941396.CrossRefGoogle Scholar
Hu, Z. G., Higashiyama, T., Yoshimura, M., Mori, Y., and Sasaki, T. Z. (1999). “Redetermination of the crystal structure of dipotassium dialuminum borate, K2Al2B2O7, a new non-linear optical material,” Z. Kristallogr.ZEKRDZ 214, 433434.Google Scholar
Pei, Z. W., Su, Q., and Zhang, J. Y. (1993). “The valence change from R E 3+ to R E 2+ (R E=Eu, Sm, Yb) in SrB4O7: R E prepared in air and the spectral properties of R E 2+,” J. Alloys Compd.JALCEU10.1016/0925-8388(93)90143-B 198, 5153.CrossRefGoogle Scholar
Penin, N., Seguin, L., Touboul, M., and Nowogrocki, G. (2001). “Synthesis and crystal structure of three M M′B9O15 borates (M=Ba, Sr and M′=Li; M=Ba and M′=Na),” Int. J. Inorg. Mater.IJIMCR 3, 10151023.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR10.1107/S0021889869006558 2, 6571.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (2003). FullProf: A program for Rietveld refinement and pattern matching analysis, Version 2.45 (Computer Software), Laboratories Léon Brillouin (CEA-CNRS), Saclay, France.Google Scholar
Schaffers, K. I. and Keszler, D. A. (1994). “Tetrahedral triangular 3-D framework and europium luminescence in the borate BaBe2(BO3)2,” Inorg. Chem.INOCAJ 33, 12011204.CrossRefGoogle Scholar
Tu, J.-M. and Keszler, D. A. (1995). “SrKB5O9,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE 51, 341343.CrossRefGoogle Scholar