Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T05:47:15.743Z Has data issue: false hasContentIssue false

Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship

Published online by Cambridge University Press:  10 January 2013

Howard F. McMurdie
Affiliation:
JCPDS — International Centre for Diffraction Data
Marlene C. Morris
Affiliation:
JCPDS — International Centre for Diffraction Data
Eloise H. Evans
Affiliation:
JCPDS — International Centre for Diffraction Data
Boris Paretzkin
Affiliation:
JCPDS — International Centre for Diffraction Data
Winnie Wong-Ng
Affiliation:
JCPDS — International Centre for Diffraction Data
Lisa Ettlinger
Affiliation:
JCPDS — International Centre for Diffraction Data
Camden R. Hubbard
Affiliation:
National Bureau of Standards

Extract

The following new or updated patterns are submitted by the JCPDS Research Associateship at the National Bureau of Standards. The patterns are a continuation of the series of standard X-ray diffraction powder patterns published previously in the NBS Circular 539, the NBS Monograph 25, and in this journal. The methods of producing these reference patterns are described in this journal, Vol. 1, No. 1, p. 40 (1986).

The data for each phase apply to the specific sample described. A sample was mixed with 1 or 2 internal standards: silicon (SRM640a), silver, tungsten, or fluorophlogopite (SRM675). Expected 2-theta values for these standards are specified in the methods described (ibid.). Data from which the reported 2-theta values were determined, were measured with a computer controlled diffractometer. Computer programs were used to locate peak positions and calibrate the patterns as well as to perform variable indexing and least squares cell refinement. A check on the overall internal consistency of the data was also provided by a computer program.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1.Weigle, J. and Saini, H. (1936). Helv. Phys. Acta 9, 515.Google Scholar
2.Smits, A. and Tollenaar, D. (1942). Z. Phys. Chem. (Leipzig) B52, 222.Google Scholar
3.Swanson, H. E. and Fuyat, R. K. (1953). Natl. Bur. Stand. (U.S.), Circ. 539 2, 49.Google Scholar
1.Warren, B. E. (1930). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 74, 131.Google Scholar
1.Harrison, D. E. and Shirane, G. (1961). J. Electrochem. Soc. 108, 788.CrossRefGoogle Scholar
1.Millet, J. M. and Roth, R. S.J. Am. Ceram. Soc. To be published.Google Scholar
2.Fotiev, A. A., Makarov, V. V., Volkov, V. L. and Surat, L. L. (1969). Russ. J. Inorg. Chem. (Engl. Transl.) 14, 144.Google Scholar
1.Kuzel, H. J. (1971). Zem.-Kalk-Gips. 24, 83.Google Scholar
2.Moore, A. E. and Taylor, H. F. W. (1970). Acta Crystallogr., Sect. B. 26, 386.CrossRefGoogle Scholar
1.Warren, B. E. (1930). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 74, 131.Google Scholar
1.Zachariasen, W. H. (1928). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 67, 226.Google Scholar
2.Smith, G. S. and Isaacs, P. B. (1964). Acta Crystallogr. 17, 842.CrossRefGoogle Scholar
3.van Arkel, A. E. (1925). Physica (Amsterdam) 5, 162.Google Scholar
4.Bohm, H. (1968). Narurwissenschaften 55, 648.CrossRefGoogle Scholar
5.Swanson, H. E. and Tatge, E. (1953). Natl. Bur. Stand. (U.S.), Circ. 539, 1, 51.Google Scholar
1.Vegard, L. (1922). Z. Phys. 9, 395.CrossRefGoogle Scholar
2.Swanson, H. E., Gilfrich, N. T. and Ugrinic, G. (1955). Natl. Bur. Stand. (U.S.), Circ. 539, 5, 36.Google Scholar
1.James, R. W. and Wood, W. H. (1925). Proc. R. Soc. London, Ser. A, 109A, 598.Google Scholar
2.Miyake, M., Minato, I., Morikawa, H. and Iwai, S. (1978). Am. Mineral. 64, 506.Google Scholar
3.Swanson, H. E., Fuyat, R. K., and Ugrinic, G. M. (1954). Natl. Bur. Stand. (U.S.), Circ. 539 3, 67.Google Scholar
1.Aurivillius, K. and Nilsson, B. A. (1975). Z. Kristallogr. Kristallgeom., Kristallphys., Kristallchem. 141, 1.CrossRefGoogle Scholar
2.Hanawalt, J. D., Rinn, H. W. and Frevel, L. K. (1938). Ind. Eng. Chem., Anal. Ed. 10, 457.CrossRefGoogle Scholar
3.Majling, J., Raninec, Š. and Ďurovič, S. (1979). Calculated Powder Diffraction Patterns for Anhydrous Phosphates (VEDA, Bratislava, Czechoslovakia), 60.Google Scholar
1.Ng, H. N., Calvo, C. (1973). Can. J. Chem. 51, 2613.CrossRefGoogle Scholar
2.Majling, J., Raninec, Š., Ďurovič, S. (1979). Calc. Powder Diff. Patterns for Anhydrous Phos. (VEDA, Bratislava, Czechoslovakia), 208.Google Scholar
1.Broch, E., Oftedal, I., and Pabst, A. (1929). Z. Phys. Chem. (Leipzig). B3, 209.Google Scholar
2.Weir, C. E. and Piermarini, G. J. (1964). J. Res. Natl. Bur. Stand., Sect. A, A68, 105.CrossRefGoogle Scholar
3.Swanson, H. E. and Tatge, E. (1953). Natl. Bur. Stand. (U.S.), Circ. 539, 1, 64.Google Scholar
1.Gamondes, J. P., d'Yvoire, F., and Boulle, A. (1971). C. R. Seances Acad. Sci., Ser. C 272, 49.Google Scholar
1.Ott, H. (1926). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 63, 222.Google Scholar
2.Swanson, H. E. and Fuyat, R. K. (1954). Natl. Bur. Stand. (U.S.), Circ. 539. 3, 47.Google Scholar
3.Tkhy, C. T. and Filatov, S. K. (1972). Russ. J. Inorg. Chem. (Engl. Transl.) 17, 799.Google Scholar
1.Barth, T. and Lunde, G. (1927). Cent. Mineral. Abt. A, 57.Google Scholar
2.Swanson, H. E. and Tatge, E. (1953). Natl. Bur. Stand. (U.S.), Circ. 539, 1, 63.Google Scholar
1.Gamondes, J.-P., d'Yvoire, F., and Boulle, A. (1971). C. R. Seances Acad. Sci., Ser. C. 272, 49.Google Scholar
2.Gamondes, J.-P., d'Yvoire, F., and Boulle, A. (1969). C. R. Seances Acad. Sci., Ser. C. 269, 1532.Google Scholar
1.Koelmans, H. and Verhagen, C. M. (1959). J. Electrochem. Soc., 106, 677.CrossRefGoogle Scholar
2.Warren, B. E. (1930). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 74, 131.Google Scholar
1.Bradley, A. J. (1924). Philos. Mag., 48, 477.CrossRefGoogle Scholar
2.Swanson, H. E. and Tatge, E. (1953). Natl. Bur. Stand. (U.S.), Circ. 539, 1, 26.Google Scholar
1.Bragg, W. L. (1920). Philos. Mag. 39, 647.CrossRefGoogle Scholar
2.Abrahams, S. C. and Bernstein, J. L. (1969). Acta Crystallogr., Sect. B 25, 1233.CrossRefGoogle Scholar
3.Bates, C. H., White, W. B., and Roy, R. (1962). Acta Crystallogr., Sect. B 137, 993.Google Scholar
4.Radczewski, O. E. and Schicht, R. F. (1969). Naturwissenschaften, 56, 514.CrossRefGoogle Scholar
5.Swanson, H. E. and Fuyat, R. K. (1953). Natl. Bur. Stand. (U.S.), Circ. 539 2, 25.Google Scholar
1.Bragg, W. L. (1920). Philos. Mag. 39, 647.CrossRefGoogle Scholar
2.Pearson, W. B., Shoemaker, C. B., and Frueh, A. J. (1967). Structure Reports 32A, 135.Google Scholar
3.Pearson, W. B., Shoemaker, C. B., and Vannerberg, N.-G. (1969). Structure Reports 34A, 133.Google Scholar
4.Swanson, H. E. and Fuyat, R. K. (1953). Natl. Bur. Stand. (U.S.), Circ. 539 2, 14.Google Scholar
5.Short, M. A. and Steward, E. G. (1955). Acta Crystallogr. 8, 733.CrossRefGoogle Scholar