Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T01:51:51.706Z Has data issue: false hasContentIssue false

A software for diffraction stress factor calculations for textured materials

Published online by Cambridge University Press:  15 June 2012

Thomas Gnäupel-Herold*
Affiliation:
Materials Science and Engineering, University of Maryland, Building 090, Room 2135, College Park, Maryland 20742 Center for Neutron Research, NIST, 100 Bureau Dr stop 6102, Gaithersburg, Maryland 20899-6102
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A software for the calculation of diffraction elastic constants (DEC) for materials both with and without preferred orientation was developed. All grain-interaction models that can use the crystallite orientation distribution function (ODF) are incorporated, including Kröner, Hill, inverse Kröner, and Reuss. The functions of the software include: reading the ODF in common textual formats, pole figure calculation, calculation of DEC for different (hkl,φ,ψ), calculation of anisotropic bulk constants from the ODF, calculation of macro-stress from lattice strain and vice versa, as well as mixture ratios of (hkl) of overlapped reflections in textured materials.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behnken, H. and Hauk, V. (1986). “Berechnung der röntgenographischen Elastizitäts-konstanten (REK) des Vielkristalls aus Einkristalldaten für beliebige Kristallsymmetrie,” Z. Met.kd 77, 620626.Google Scholar
Bollenrath, F., Hauk, V. and Müller, E. H. (1967). “Zur Berechnung der vielkristallinen Elastizitätskonstanten aus den Werten des Einkristalls,” Z. Met.kd 58, 7682.Google Scholar
Gnäupel-Herold, T. (2011). “IsoDEC: a software for calculating diffraction elastic constants,” J. Appl. Cryst. (Submitted).Google Scholar
Gnäupel-Herold, T. (2012). “A model for calculating diffraction elastic constants,” J. Appl. Cryst. 45(2), 197206.CrossRefGoogle Scholar
Hielscher, R. and Schaeben, H. (2008). “A novel pole figure inversion method: specification of the MTEX algorithm,” J. Appl. Cryst. 41, 10241037.Google Scholar
Hill, R. (1952). “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc. London 65, 349354.CrossRefGoogle Scholar
Kallend, J. S., Kocks, U. F., Rollett, A. D., and Wenk, H.-R. (1991). “Operational texture analysis,” Mater. Sci. Eng. A 132, 111.CrossRefGoogle Scholar
Kröner, E. (1958). “Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls,” Z. Phys. 151, 504518.Google Scholar
Möller, H. and Martin, G. (1939). “Elastische Anisotropie und röntgenographische Spannungsmessung,” Mitt. Kaiser Wilhelm Inst. Eisenforsch. 21, 261269.Google Scholar
Murray, C.E. and Noyan, I.C. (1999). “A modified Voigt method for calculation of the elastic constants of ensembles selected by diffraction methods,” Phil. Mag. A 79, 371389.CrossRefGoogle Scholar
Reuss, A. (1929). “Berechnung der Fließgrenze von Mischkristallen aufgrund der Plastizitätsbedingung für Einkristalle,” Z. Angew. Math. Mech. 9, 4959.CrossRefGoogle Scholar
Voigt, W. (1928). Lehrbuch der Kristallphysik (Teubner, Leipzig).Google Scholar