Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T05:53:57.776Z Has data issue: false hasContentIssue false

Rigid bodies in powder diffraction. A practical guide

Published online by Cambridge University Press:  10 January 2013

Robert E. Dinnebier
Affiliation:
Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth, Germany

Abstract

Recipes are given to assist in setting up rigid bodies for common molecules and coordination polyhedra, to define satellite groups, to perform rotations around arbitrary axes through the origin of the rigid body, and to refine intramolecular degrees of freedom under consideration of the special needs of powder diffraction. To the greatest possible extent, the notation follows that of the well known Rietveld refinement program GSAS (Larson and Von Dreele, 1994).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

David, W. I. F., Ibberson, R. M., Dennis, T. J. S., Hare, J. P., and Prassides, K. (1992).Europhys. Lett. 18, 219225.CrossRefGoogle Scholar
Dinnebier, R. E., Behrens, U., and Olbrich, F. (1997).Organometallics 16, 38553858.CrossRefGoogle Scholar
Dinnebier, R. E., Olbrich, F., van Smaalen, S., and Stephens, P. W. (1997).Acta Crystallogr., Sect. B: Struct. Sci. 53, 153158.CrossRefGoogle Scholar
Dinnebier, R. E., Schneider, M., van Smaalen, S., Olbrich, F., and Behrens, U. (1999a).Acta Crystallogr., Sect. B: Struct. Sci. 55, 3544.CrossRefGoogle Scholar
Dinnebier, R. E., Von Dreele, R., Stephens, P. W., Jelonek, S., and Sieler, J. (1999b). J. Appl. Crystallogr. (in press).Google Scholar
Dinnebier, R. E., Dollase, W., Helluy, Y., Kümmerlen, J., Sebald, A., Schmidt, M. U., Pagola, S, Stephens, P. W., and van Smaalen, S. (1999c). Acta Crystallogr., Sect. B: Struct. Sci. (in press).Google Scholar
Doedens, R. J. (1970). in Crystallographic Computing, edited by F. R. Ahmed (Munksgaard, Copenhagen), pp. 198–204.Google Scholar
Downs, R. T. (1989). Ph.D. thesis, Virginia Tech, Blacksburg, VA 24061.Google Scholar
Goldstein, H. (1980). Classical Mechanics (Addison Wesley, Reading).Google Scholar
Larson, A. C., and Von Dreele, R. B. (1994). GSAS. Los Alamos National Laboratory Report LAUR 86-748. (Used version: August 1997).Google Scholar
Leach, A. R. (1996). Molecular Modelling: Principles and Applications (Addison Wesley Longman Limited, England).Google Scholar
Lightfoot, P., Metha, M. A., and Bruce, P. G. (1993).Science 262, 883885.CrossRefGoogle Scholar
Rietveld, H. M. (1969).J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Scheringer, C. (1963).Acta Crystallogr. 16, 546550.CrossRefGoogle Scholar
Schmidt, M. U., and Dinnebier, R. E. (1999).J. Appl. Crystallogr. 31 178186.CrossRefGoogle Scholar
Schmidt, M. W., Finger, L. W., Angel, R. J., and Dinnebier, R. E. (1998).Am. Mineral. 83, 881888.CrossRefGoogle Scholar
Van Smaalen, S, Dinnebier, R. E., Holleman, I., von Helden, G., and Meijer, G. (1998).Phys. Rev. B 57, 63216324.CrossRefGoogle Scholar