Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T14:42:59.775Z Has data issue: false hasContentIssue false

Rietveld refinement of chapmanite SbFe2Si2O8OH, a TO dioctahedral kaolinite-like mineral

Published online by Cambridge University Press:  10 January 2013

P. Ballirano
Affiliation:
Corso Duca di Genova 147, I-00121, Roma, Italy
A. Maras
Affiliation:
Dipartimento di Scienze della Terra, Università di Roma “La Sapienza,” P. le A. Moro 5, I-00185, Roma, Italy
F. Marchetti
Affiliation:
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, V. Risorgimento 35, I-56126, Pisa, Italy
S. Merlino
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, V. S. Maria 53, I-56126, Pisa, Italy
N. Perchiazzi
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, V. S. Maria 53, I-56126, Pisa, Italy

Abstract

Chapmanite, Sb(OH)Fe2(SiO4)2 is a rare mineral that generally occurs as yellow coatings on rocks from antimony mines. The very small dimensions of the crystals prevented X-ray, single-crystal study of the mineral whose structure was derived through high voltage electron diffraction (Zhukhlistov and Zvyagin, 1977). The present study confirm the correctness of the structure determined by those authors and also shows the effectiveness of the Rietveld method in the case of highly diluted phases. The structure of chapmanite is similar to that of kaolinite with two major differences: (a) the dioctahedral sheet of chapmanite contains Fe3+ instead of Al3+; (b) chapmanite has cations grasped to the octahedral sheet, on the opposite side with respect to the tetrahedral sheet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J. W., Bideaux, R. A., Bladh, K. W., and Nichols, M. C. (1995). Handbook of Mineralogy (Mineral Data Publishing, Tucson), Vol. II, pt. 1, p. 400.Google Scholar
Bish, D. L., and Von Dreele, R. B. (1989). “Rietveld refinement of non-hydrogen atomic positions in kaolinite,” Clays Clay Miner. 37, 289296.CrossRefGoogle Scholar
Brese, N., and O’Keeffe, M. (1991). “Bond valence parameters for solids,” Acta Crystallogr., Sect. B: Struct. Sci. B47, 192197.CrossRefGoogle Scholar
Brown, B. E., and Bailey, S. W. (1964). “The structure of maximum microcline,” Acta Crystallogr., Sect. B B17, 1391–1400.Google Scholar
Cech, F., and Povondra, P. (1963). “Study of Chapmanite from Smilkov, near Votice (Bohemia, Czechoslovakia),” Acta Univ. Carolinae, Geol. 2, 97–114 (in Czech with English abs.).Google Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr. 19, 267272.CrossRefGoogle Scholar
Effenberger, H., Mereiter, K., and Zemann, J. (1981). “Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithsonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates,” Z. Kristallogr. 156, 233243.CrossRefGoogle Scholar
Franzini, M., Ricci, C. A., and Sabatini, G. (1972). “Note di mineralogia toscana: Ritrovamento di chapmanite alla miniera del Tafone (Manciano, Grosseto),” Atti Soc. Tosc. Sci. Nat., Mem. Ser. A 79, 280–285.Google Scholar
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” J. Appl. Crystallogr. 15, 615620.CrossRefGoogle Scholar
Larson, A. C., and Von Dreele, R. B. (1985). GSAS General Structure Analysis System. LAUR 86-748, Los Alamos National Laboratory, Copyright, 1985–1994, The Regents of the University of California.Google Scholar
LePage, Y., Calvert, L. D., and Gabe, E. J. (1980). “Parameter variation in low-quartz between 94 and 298K,” J. Phys. Chem. Solids 41, 721725.CrossRefGoogle Scholar
Milton, C., Axelrod, J. M., and Ingram, B. (1958). “Bismutoferrite, chapmanite, and ‘hypochlorite’,” Am. Mineral. 43, 656670.Google Scholar
Walker, T. L. (1924). “Chapmanite, a new hydrous ferrous silico-antimonate, from South Lorrain, Ontario,” Contr. Can. Mineral. 3, 5–8.Google Scholar
Wiles, D. B., and Young, R. A. (1981). “A new computer program for Rietveld analysis of X-ray powder diffraction patterns,” J. Appl. Crystallogr. 14, 149151.CrossRefGoogle Scholar
Young, R. A. (1993). “Introduction to the Rietveld method,” in The Rietveld Method, edited by Young, R. A. (Oxford Science, Oxford), p. 22.Google Scholar
Zhukhlistov, A. P., and Zvyagin, B. B. (1977). “Determination of the crystal structures of chapmanite and bismuthoferrite by high-voltage electron diffraction,” Sov. Phys. Crystallogr. 22, 419423.Google Scholar